VI

21-26 , 2008

THE PROBLEMS OF DYNAMICS OF INTERACTION OF DEFORMABLE MEDIA

Proceedings of VI International Conference September 21-26 Goris-Stepanakert , 2008

75- a a a

VI 21-26, 2008,

THE PROBLEMS OF DYNAMICS OF INTERACTION OF DEFORMABLE MEDIA

-

Devoted to 75-th anniversary of corresponding member NAS RA A.G. Bagdoev

Proceedings of VI International Conference September 21-26, 2008, Goris-Stepanakert

-2008

Ðî 06: 531/534 ¶Ø 22.2 447

The main results of the collection are related to the linear and non-linear problems of interaction elasto-plastic media taking into account of magnetic fields, to the problems of seismology, to the space and plane boundary problems of dynamics of elastic media. The propagation of surface waves in ferromagnetic, anisotropic, elastic media, resonance interaction in media with microstructure, problems of stability of propagation of non-linear waves are considered. Some of works concern to methods of numerical-analytical integration of equation for elasto-plastic media and to the problems of creep.

The collection will be useful for the scientific researchers and post-graduate students, occupied by the problems of dynamics of continuous media.

_ 447 _ »ýáñÙ³ óí áÕ ÙÇç³ í ³ lň»ñÇ ÷á˳½¹»óáõÃl³ Ý ¹Çݳ ÙÇÏ ³ lÇ åñáµÉ»ÙÝ»ñÁ. – ° ñ.: ĐĐ ¶²² ػ˳ ÝÇÏ ³ lÇ ÇÝëï Çï áõï , 2008. – 456 ¿ç:

¶Ø, 22.2

ISBN 978-99941-2-163-2

¶Çï ³ ÅáÕáí Ç Ï ³ ½Ù³ Ï »ñåÇãÝ»ñ $DD \hat{I} \tilde{n} \tilde{A} \delta \tilde{A} \hat{U}^3 \hat{Y} \cdots \hat{C} \tilde{I} \delta \tilde{A} \hat{U}^3 \hat{Y} \hat{Y}^3 \dot{E}^3 \tilde{n}^3 \tilde{n} \delta \tilde{A} \hat{U} \delta \tilde{V}$ ĐĐ ¶²²Ø»Ë³ÝCÏ³ÛC CÝëï Cĩ áối, è ØäĐ-ÇØ»Ë³ÝÇÏ³ÛÇÇÝëïÇïáõï, $\dot{e}_{,}$ ¶² Ø» \dot{E}^{3} ÝÇÏ³ \hat{U} Ç åñáµÉ»ÙÝ»ñÇ ÇÝëï Çï áõi , ¶áñÇëÇ å»ï зïзÝÑзÙз[ёзñзÝ, ² ñó³ ËÇ å»ï ³ ï ³ ý ѳ Ù³ [ë³ ñ³ ý

[°]üàðØ²òì àÔ ØÆæ²ì ²Úð°ðÆ öàʲ¼ °òàôÂÚ²Ü , ÆÜ²ØÆÎ ²ÚÆ äðà ´È°ØÜ°ðÀ

ÜÍ ÇÑÍ áõÙ ¿ ĐĐ ¶²² ÃÕó Ï Çó ³ Ý¹³ Ù ²É»ùë³Ý¹ñ ¶»áñ• ÇÇ´³•¹á"Ç Í ÝÝ 1Û 3 Ý 75-3 ÙÛ 3 Ï CÝ

VI ÙCc³ ½· ³ ĴCÝ · Cï ³ ÅáÕáí ë»åï»Ùµ»ñÇ 21-26, 2008Ã. ¶áñCë-êï »÷³Ý³Ï»ñï

ĐĐ ¶²²Ø»Ë³ÝÇÏ³ÛÇ ÇÝëï Çï áối ° ñ^{..} 3 Ý – 2008

· ·, · ·,

- · · · · · · · · · ·
- :
- · · · ·, · ·,
 - · · · ·, · · · · · ·

:

:

: . .

- · · · ·, · · ·, · · ·, · · ·,
 -

:

- ...,
 ...,
 ...,
 ...,

 ...,
 ...,
 ...,
 ...,

 ...,
 ...,
 ...,
 ...,

 ...,
 ...,
 ...,
 ...,

 ...,
 ...,
 ...,
 ...,

 ...,
 ...,
 ...,
 ...,

 ...,
 ...,
 ...,
 ...,
- · ·, · ·, · ·, · ·, · ·, · ·, ·, · ·

.

•

!

•

,

x, y.
, y.
, -
, [1]

$$m y_n = -f_0 \sin(\frac{2f y_n}{a}) + k(y_{n+1} - y_n) - k(y_n - y_{n-1}) + F$$

 $y_n - n - , m - ,$
 $f = f_0 \sin(\frac{2f x}{a}) - , ,$
 $F - ,$

. ,

, , ,

•••, •••, •••

.

-

•••,

,

,

.

• ,

$$\begin{array}{cccc}
, & 2f \frac{y_n}{a} = f + \{ _n \\
& & \vdots \\
& & & \\ W_u - c_0^2 W_{xx} + \check{S}_0^2 \sin W - \frac{2f F}{ma} = 0, \\
& & \\ C_0 - & & \\ &$$

$$\begin{aligned} & (\dagger_{xx} = 0; \ \dagger_{yy} = 0; \\ & (\dagger_{xy})_{y=0} = \frac{-bc_t^2}{2f(x-vt)v^2\sqrt{1-\frac{v^2}{c_t^2}}} [(2-\frac{v^2}{c_t^2})^2 - 4\sqrt{1-\frac{v^2}{c_t^2}}\sqrt{1-\frac{v^2}{c_t^2}}] \\ & \sim - \qquad , \ c_t \ , c_l \ - \\ & , \qquad , \ f_{xy} - \\ & , \qquad , \ f_x = b \ \dagger_{xy}, \end{aligned}$$

$$F = \frac{-b^2c_t^2[(2-\frac{v^2}{c_t^2})^2 - 4\sqrt{1-\frac{v^2}{c_t^2}}\sqrt{1-\frac{v^2}{c_t^2}}]}{\tilde{S}^2ma(x-vt)v^2\sqrt{1-\frac{v^2}{c_t^2}}}$$
(3)

$$x = \frac{v_0}{\hat{s}}\tilde{x}, \ t = \frac{\tilde{t}}{\hat{s}}, \qquad \tilde{x} \to x, \ \tilde{t} \to t, \ r = \frac{-b^2 c_t^2}{\hat{s}ma},$$

$$(1) \qquad (x \qquad t = -\frac{v_0}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (1) \qquad (x \qquad t = -\frac{v_0^2 c_t^2}{\hat{s}ma}), \qquad (2) \qquad (2) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$$

$$(298 \qquad 8*10^2 \ / \ \dagger \approx 10^6 \ / \ ^2)$$

,

x .

•

,

(. 10^{-2} / 10^{-1} /) x.

.1.

.2

,

,

.

$$2{}^{*}10^{5}$$
 / $-2.45{}^{*}10^{5}$ / .

. 5,

x,

- 10 -

.5.

- 11 -

.6 () $(10^{-4} \sim -10^2 \sim) [2]$.

_

.

 1.
 ./
 .
 , .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</td

•

,

-

_____:

•

: . , 1,

$$\begin{vmatrix} \sigma_{xx} \sigma_{xy} \sigma_{xz} \\ \sigma_{yx} \sigma_{yy} \sigma_{yz} \\ \sigma_{zx} \sigma_{zy} \sigma_{zz} \end{vmatrix} = \left(-\sigma + \mu \cdot \operatorname{div} \bar{V} \right) \begin{vmatrix} 100 \\ 010 \\ 001 \end{vmatrix} + 2\eta \begin{vmatrix} \varepsilon_{xx} \varepsilon_{xy} \varepsilon_{xz} \\ \varepsilon_{yx} \varepsilon_{yy} \varepsilon_{yz} \\ \varepsilon_{zx} \varepsilon_{zy} \varepsilon_{zz} \end{vmatrix}$$
(1)

••

.

,

-

$$T_{\hat{i}\,\hat{a}\hat{i}_{\cdot}} = (\sigma + \mu \cdot \operatorname{div} V) \cdot T_{\hat{a}\hat{a}_{\cdot}} + 2\eta \cdot T_{\hat{n}\hat{e}_{\cdot}\hat{a}\hat{a}\hat{o}_{\cdot}}$$
(2)

$$T_{
m f\,\acute{a}
m i.}$$
 – ; V – ; $T_{
m aa.}$ – ; $T_{
m ne.aao.}$ – ,

$$\varepsilon_{xx} = \frac{\partial V_x}{\partial x}; \ \varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial V_x}{\partial y} + \frac{\partial V_y}{\partial x} \right)$$

$$\varepsilon_{xz} = \frac{1}{2} \left(\frac{\partial V_x}{\partial z} + \frac{\partial V_z}{\partial x} \right); \ \varepsilon_{yy} = \frac{\partial V_y}{\partial y}$$

$$\varepsilon_{yz} = \frac{1}{2} \left(\frac{\partial V_y}{\partial z} + \frac{\partial V_z}{\partial y} \right); \ \varepsilon_{zz} = \frac{\partial V_z}{\partial z}$$
(1)

$$\sigma_{xx} = -\sigma + \mu \cdot \operatorname{div} V + 2\eta \cdot \varepsilon_{xx}; \ \sigma_{xy} = \sigma_{yx} = 2\eta \cdot \varepsilon_{xy}; \ \sigma_{xz} = \sigma_{zx} = 2\eta \cdot \varepsilon_{xz}$$

$$\sigma_{yy} = -\sigma + \mu \cdot \operatorname{div} \bar{V} + 2\eta \cdot \varepsilon_{yy}; \ \sigma_{zz} = -\sigma + \mu \cdot \operatorname{div} \bar{V} + 2\eta \cdot \varepsilon_{zz}$$
(4)
$$\sigma_{yz} = \sigma_{zy} = 2\eta \cdot \varepsilon_{yz}$$
(4)
$$\eta \quad \mu : \eta$$

$$\varepsilon, \quad \mu - \eta$$

. - 13 -

$$\dot{\mathsf{A}}' = 2\eta \cdot T_{\tilde{\mathsf{n}}\tilde{\mathsf{e}}.\tilde{a}\tilde{a}\tilde{\mathsf{o}}.} \tag{5}$$

,

,

•

. -

,

,

-

$$\ddot{\mathsf{A}}'' = \frac{2\tau_0}{a} \cdot T_{\tilde{\mathsf{n}}\tilde{e},\tilde{a}\tilde{a}\tilde{o}.}$$
(6)
(5) (6)

$$\ddot{\mathsf{A}} = 2 \cdot (\eta + \frac{\tau_0}{a_1}) \cdot T_{\tilde{\mathsf{ne}}.\tilde{\mathsf{a}}\tilde{\mathsf{a}}\tilde{\mathsf{o}}.}$$
⁽⁷⁾

$$\tau_{0} - ; a_{1} - ; a_{1$$

$$a_{1} = \pm \sqrt{2 \left(\frac{\partial V_{x}}{\partial x}\right) + 2 \left(\frac{\partial V_{z}}{\partial z}\right) + \left(\frac{\partial V_{x}}{\partial y} + \frac{\partial V_{y}}{\partial x}\right) + \left(\frac{\partial V_{x}}{\partial z} + \frac{\partial V_{z}}{\partial x}\right) + \left(\frac{\partial V_{y}}{\partial z} + \frac{\partial V_{z}}{\partial y}\right)$$
(9)

 a_1

(6)

,

,

:
$$\sigma_{xx} = -\sigma + 2\left(\eta + \frac{\tau_0}{a_1}\right)\varepsilon_{xx}$$

.

,

.

,

•

.

,

$$\sigma_{xz} = \sigma_{zx} = 2\left(\eta + \frac{\tau_0}{a_1}\right)\varepsilon_{xz}$$
(10)

$$\sigma_{yz} = \sigma_{zy} = 2\left(\eta + \frac{\tau_0}{a_1}\right)\varepsilon_{yz}$$
(10)

$$\sigma_{xy} = -\sigma_{yx} = 2\left(\eta + \frac{\tau_0}{a_1}\right)\varepsilon_{xy}$$
(10)

$$\sigma_{yy} = -\sigma + 2\left(\eta + \frac{\tau_0}{a_1}\right)\varepsilon_{yy}$$
(10)

$$\frac{\sigma_{xx} - \sigma_{yy}}{2\sigma_{xy}} = \frac{\varepsilon_{xx} - \varepsilon_{yy}}{\varepsilon_{xy}},$$
(11)

$$\sigma_n = \sigma_x \cdot \cos(n, x) + \sigma_y \cdot \cos(n, y) + \sigma_z \cdot \cos(n, z)$$
(13)

$$\int_{s} \sigma_{x} \cos(n, x) dS = \int \frac{\partial \sigma_{x}}{\partial x} \cdot dV; \quad \int_{s} \overline{\sigma}_{y} \cdot \cos(n, y) dS = \int_{v} \frac{\partial \sigma_{y}}{\partial y} \cdot dV$$

$$\int_{s} \sigma_{z} \cdot \cos(n, z) \cdot dS = \int_{v} \frac{\partial \sigma_{z}}{z} \cdot dV \quad (14)$$

$$(13) \quad (14) \quad (12)$$

- 15 -

$$\int_{v} \left[(\overline{F} - \overline{a})\rho + \frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} \right] \cdot dV = 0$$
(15)
(15)
, ...
(15)

$$\overline{F} - \overline{a} + \frac{1}{\rho} \left(\frac{\partial \overline{\sigma}}{\partial x} + \frac{\partial \overline{\sigma}}{\partial y} + \frac{\partial \overline{\sigma}}{\partial z} \right) = 0$$
(16)
(16)

$$\rho \frac{\partial V_x}{\partial t} = \rho \cdot f_x - \frac{\partial \sigma}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z}$$

$$\rho \frac{\partial V_y}{\partial t} = \rho \cdot f_y - \frac{\partial \sigma}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z}$$

$$\rho \frac{\partial V_z}{\partial t} = \rho \cdot f_z - \frac{\partial \sigma}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z}$$
(17)

$$V_{x} = \frac{\partial x}{\partial t}; V_{y} = \frac{\partial y}{\partial t}; V_{z} = \frac{\partial z}{\partial t}; \tau_{xx} = \sigma + \sigma_{xx}$$

$$\tau_{xy} = \sigma_{xy}; \tau_{xz} = \sigma_{xz}; \tau_{yy} = \sigma + \sigma_{yy}; \tau_{yz} = \sigma_{yz}; \tau_{zz} = \sigma + \sigma_{zz}$$

$$\sigma_{xx}; \sigma_{xy}; \sigma_{xz}; \sigma_{yy}; \sigma_{yz}; \sigma_{zz} - ,$$

$$(4) \qquad \operatorname{div} V = 0, \qquad -$$

(

•

•

(10); σ –

(4)	(10)	_
(4)	(10)	-

• . :

,

),

TIME-OPTIMAL CONTROLLED SEARCH **OF A IMMOBILE OBJECT**

Avetisyan V.V. (Armenia), Mojtaba Ghanbari (Iran)

1. Statement of the problem. We consider a system of controlled mobile point object X and immobile point object Y

$$X: \dot{x} = v, \quad x(t) \in D; \quad v(t) \in V; \quad t \ge t_0 \quad Y: \quad y(t) \equiv y^0 \in \widetilde{D}; \quad t \ge t_0 \\ D = \left\{ x \in R^3: \quad 0 < x_i \le a_i \le d, \quad i = 1, 2, 3 \right\} \quad \widetilde{D} = \left\{ y \in R^2: \quad 0 < y_i \le a_i \le d, \quad i = 1, 2 \right\} \\ V = \left\{ v \in R^3: \quad \left| v_i \right| \le V_i, \quad i = 1, 2, 3 \right\}$$
(1)

Here x is the state vector of the object X ; v - vector of control parameters.The information about object y^0 can be improved during the motion by means of observations, described by moving informational set G = G(x(t)) depending upon the current the state vector x(t), while

$$G(x(t)) = G(\widetilde{x}(t), x_3(t), C) = \left\{ \widetilde{} \in \mathbb{R}^2 : \left| \widetilde{} - \widetilde{x} \right| \le h/2 = Cx_3, \quad \widetilde{x} = (x_1, x_2) \in \widetilde{D}, \quad C > 0 \right\}$$
(2)

The object Y is considered to be observed (to be precisely known) at the first moment $t_* \ge t_0$, when the observation condition holds:

$$y^{0} \in G(x^{*}), \quad x^{*} = x(t_{*})$$
(3)

According to available information the class of the pairs of open-loop control functions of the type[1]: $\mathbf{v} = \left\{ \mathbf{v}_0(x^0, t_0; t), \mathbf{v}_1(x^*, t_*, y^0, t) \right\}$ is considered as the set of admissible controls. Here $x^0, t_0; x^*, t_*, y^0$ are parameters. On the interval $[t_0, t_*]$ the search control v_0 is used, which depends also upon set-parameters $^{D}, G$. After the observation moment t_{*} , when the vector y^{0} becomes known, a point-to-point control v_1 is used on $[t_*, T]$, which brings the st te vector from x^* to y^0 . Another requirement to admissible control is to produce finite moments t_*, T . Let the class of admissible controls be nonempty. Assume that the first coordinates $\tilde{x}^{0} = (x_{1}^{0}, x_{2}^{0}) \quad 0 \le x_{1}^{0}, x_{2}^{0} \le a_{1}, a_{2}$ and the parameters $a_{1}, a_{2}(1)$, C (2) are given. Then to each value of vertical coordinate x_3^0 , $0 \le x_3^0 \le a_3$ and each couple $v = \{v_0, v_1\}$ and each $y^0 \in \widetilde{D}$ unique trajectory $x(t), t_0 \le t \le T$ and the time of motion $T(x_3^0, \mathbf{v}) = t^*(x_3^0, \mathbf{v}_0) + t^1(x^*(x_3^0, \mathbf{v}_0), y^0, \mathbf{v}_1)$ correspond. Now the minimax duration of the process $T_* = T - t_0$ and guaranteeing control v^{*}

and the initial diameter of the circle of detection $h_0^* = 2C(x_3^0)^*$ are defined from:

$$T_* = \min_{0 < h_0 \le h_{\max}} \min_{\mathbf{v} = \{v_0, v_1\}} \max_{y^0 \in \widetilde{D}} T(h_0, y^0, \mathbf{v})$$
(4)

2. Control algorithm. Consider two space broken lines L_1 and L_2 coming from the starting point $x_i^0 = (0,0,x_3^{0(i)})$, $0 < x_3^{0(i)} \le 1$, i = 1, 2, who's projections L_1' and L_2' on the rectangular bottom \tilde{D} in the plane Ox_1x_2 are shown in fig.1a and 1b, respectively.

Remark. The projection of the trajectory of object X (under the control v_0) on the rectangular bed \tilde{D} is covering [2], then the time t_* at which the desired object Y is detected at the endpoint of this trajectory ($y^0 = \{(a_1,0),(0,a_2),(a_1,a_2)\}$) is called a guaranteed search time. Moving along the broken line L_i , the projection of the manipulator gripper scans the rectangle \tilde{D} along the broken line L_i' .

Assume that the lengths of the sections of the broken lines that lie in the lateral sides of the rectangle decrease according to the arithmetic progression law with a constant $0 < q_i < h_0^{(i)}$, where $h_0^{(i)} = 2Cx_3^{0(i)}, 0 < h_0^{(i)} \le \min\{a_1, a_2\}$ is the initial diameter of the circle of detection. Obviously that

 $a_2 = (2h_0^{(1)} - (n_1 - 1) \cdot q_1)n_1/2$, $a_1 = (2h_0^{(2)} - (n_2 - 1) \cdot q_2)n_2/2$ (5) where n_i is an integer that specifies the number of described sections or steps of scanning. Then, the controls under which the object X moves along the trajectories $L_i(i = 1, 2)$ are given as follows:

$$\mathbf{v}_{L_{1}} = \begin{cases} \mathbf{v}_{1} = 0, \ \mathbf{v}_{2} = V_{2}, \ \mathbf{v}_{3} = 0, & t_{0} \leq t \leq t_{1}^{(1)} \\ \mathbf{v}_{1} = V_{1}, \ \mathbf{v}_{2} = 0, \ \mathbf{v}_{3} = 0 & t_{4r+1}^{(1)} \leq t \leq t_{4r+2}^{(1)}, \ r = 0, 1, \dots, [(n_{1} - 1)/2] \\ \mathbf{v}_{1} = -V_{1}, \ \mathbf{v}_{2} = 0, \ \mathbf{v}_{3} = 0 & t_{4r+3}^{(1)} \leq t \leq t_{4r+4}^{(1)}, \ r = 0, 1, \dots, [(n_{1} - 1)/2] \\ \mathbf{v}_{1} = 0, \ \mathbf{v}_{2} = (2h_{0}^{(1)} - (2r + 1)q_{1}CV_{3})/q_{1}, \ \mathbf{v}_{3} = V_{3}, \ t_{2r}^{(1)} \leq t \leq t_{2r+3}^{(1)}, \ r = 0, 1, \dots, n_{1} - 1 \\ \mathbf{v}_{1} = 0, \ \mathbf{v}_{2} = CV_{3}, \ \mathbf{v}_{3} = V_{3} & t_{2r+2}^{(1)} \leq t \leq t_{2r+3}^{(1)}, \ r = n_{1} - 1 \end{cases}$$
(6)
$$\mathbf{v}_{L_{2}} = \begin{cases} \mathbf{v}_{1} = V_{1} \ \mathbf{v}_{2} = 0 \ \mathbf{v}_{3} = 0 & t_{0} \leq t \leq t_{1}^{(2)} \\ \mathbf{v}_{1} = 0 \ \mathbf{v}_{2} = V_{2} \ \mathbf{v}_{3} = 0 & t_{0}^{(2)} \leq t \leq t_{1}^{(2)}, \ r = 0, 1, \dots, [(n_{2} - 1)/2] \\ \mathbf{v}_{1} = 0 \ \mathbf{v}_{2} = -V_{2} \ \mathbf{v}_{3} = 0 & t_{4r+3}^{(2)} \leq t \leq t_{4r+4}^{(2)}, \ r = 0, 1, \dots, [(n_{2} - 1)/2] \\ \mathbf{v}_{1} = (2h_{0}^{(2)} - (2r + 1)q_{2}CV_{3})/q_{2}, \ \mathbf{v}_{2} = 0, \ \mathbf{v}_{3} = V_{3}, \ t_{2r}^{(2)} \leq t \leq t_{2r+1}^{(2)}, \ r = 0, 1, \dots, n_{2} - 1 \\ \mathbf{v}_{1} = CV_{3}, \ \mathbf{v}_{2} = 0, \ \mathbf{v}_{3} = V_{3}, \ t_{2r+2}^{(2)} \leq t \leq t_{2r+3}^{(2)}, \ r = n_{2} - 1 \end{cases}$$
(7)

The total time the motion of the X along the trajectories L_i , i = 1, 2 is computed as

$$T_{L_{1}}(h_{0}^{(1)},n_{1},q_{1}) = t_{L_{1}}^{*} + t_{L_{1}}^{1}, \quad T_{L_{2}}(h_{0}^{(2)},n_{2},q_{2}) = t_{L_{2}}^{*} + t_{L_{2}}^{1}$$

$$t_{L_{1}}^{*}(h_{0}^{(1)},n_{1},q_{1}) = h_{0}^{(1)}/2V_{2} + n_{1}a_{1}/V_{1} + (n_{1}-1)q_{1}/2CV_{3}$$

$$t_{L_{1}}^{1}(h_{0}^{(1)},n_{1},q_{1}) = h_{n_{1}}^{(1)}/2CV_{3} = (h_{0}^{(1)} - (n_{1}-1)q_{1})/2CV_{3}$$

$$t_{L_{2}}^{*}(h_{0}^{(2)},n_{2},q_{2}) = h_{0}^{(2)}/2V_{1} + n_{2}a_{2}/V_{2} + (n_{2}-1)q_{2}/2CV_{3}$$

$$t_{L_{2}}^{1}(h_{0}^{(2)},n_{2},q_{2}) = h_{n_{2}}^{(2)}/2CV_{3} = (h_{0}^{(2)} - (n_{2}-1)q_{2})/2CV_{3}$$
(8)

Using the relations

$$q_{1} = \left(2Ch_{0}^{(1)}V_{3}\right) / \left(V_{2} + CV_{3}\right), \qquad q_{2} = \left(2Ch_{0}^{(2)}V_{3}\right) / \left(V_{1} + CV_{3}\right)$$
(9)

for T_{L_1} , T_{L_2} from (8), (9) we obtained respectively

$$T_{L_1}(h_0^{(1)}, n_1) = h_0^{(1)}(V_2 + CV_3)/2CV_2V_3 + n_1a_1/V_1$$
(10)

$$T_{L_2}(h_0^{(2)}, n_2) = h_0^{(2)}(V_1 + CV_3) / 2CV_1V_3 + n_2a_2 / V_2$$
(11)

3. Optimal choice of the control from two constructed controls. We come to the solution of the problem (4). Taking into account the *Remark* and (10), (11), we write problem (4) in the form

$$T^* = \min\left\{\min_{0 < h_0^{(1)} \le h_{\max}} \min_{n_1 \in \mathbb{Z}} T_{L_1}(h_0^{(1)}, n_1), \quad \min_{0 < h_0^{(2)} \le h_{\max}} \min_{n_2 \in \mathbb{Z}} T_{L_2}(h_0^{(2)}, n_2)\right\}$$
(12)

At first for given $a_1, a_2, V_1, V_2, V_3, C$, using (9), we resolve (5) for n_i , i = 1, 2

$$n_1^{\pm}(h_0^{(1)}) = (V_2 + 2CV_3) / 2CV_3 \pm \sqrt{\Delta_1} > 0$$
(13)

$$\Delta_{1} = ((V_{2} + 2CV_{3})/2CV_{3})^{2} - (a_{2}(1 + CV_{3})/CV_{3})(h_{0}^{(1)})^{-1}$$

$$n_{2}^{\pm}(h_{0}^{(2)}) = (V_{1} + 2CV_{3})/2CV_{3} \pm \sqrt{\Delta_{2}} > 0$$
(14)

$$\Delta_{2} = ((V_{1} + 2CV_{3})/2CV_{3})^{2} - (a_{1}(1 + CV_{3})/CV_{3})(h_{0}^{(2)})^{-1}$$

In (13), (14) $\Delta_{i} \ge 0$, $i = 1, 2$ if $\frac{\chi_{i}}{S_{i}^{2}} \le h_{0}^{(i)} \le h_{\max}$, $S_{1} = \frac{V_{2} + 2CV_{3}}{2CV_{3}}$,
 $\chi_{1} = \frac{a_{2}(1 + CV_{3})}{CV_{3}}$, $S_{2} = \frac{V_{1} + 2CV_{3}}{2CV_{3}}$, $\chi_{2} = \frac{a_{1}(1 + CV_{3})}{CV_{3}}$. Using the relations (13), (14) for

 $n_{i_1}^-(h_0^{(i)})$, we find the optimal $h_0^{(1)*}, h_0^{(2)*}$ from

$$T_{L_{i}}^{-}(a_{1}, a_{2}, V_{1}, V_{2}, V_{3}, C, h_{0}^{(i)}) \to \min_{\substack{X_{i} \\ S_{i}^{2} \le h_{0}^{(i)} \le h_{\max}}}$$

$$T_{L_{i}}^{-}(a_{1}, a_{2}, V_{1}, V_{2}, V_{3}, C, h_{0}^{(i)}) \to \min_{\substack{X_{i} \\ S_{i}^{2} \le h_{0}^{(i)} \le h_{\max}}}$$
(15)

(15)

$$T_{L_1}^{-} = h_0^{(1)} (V_2 + CV_3) / 2CV_2 V_3 + a_1 ((V_2 + CV_3) / 2CV_1 V_3 - \sqrt{\Delta_1} / V_1)$$
(16)

$$T_{L_{i}}^{-} = h_{0}^{(2)}(V_{1} + CV_{3})/2CV_{1}V_{3} + a_{2}((V_{2} + CV_{3})/2CV_{2}V_{3} - \sqrt{\Delta_{2}}/V_{2})$$
(17)

The optimal values $h_0^{(1)*}$ and $h_0^{(2)*}$ in (15) are found as follows:

$$h_{0}^{(i)*} = \begin{cases} h_{0}^{(i)-}, & \text{if } T_{L_{i}}^{-}(h_{0}^{(i)-}) = \min T_{L_{i}}^{-}(h_{0}^{(i)}), \ x_{i} / S_{i}^{2} \le h_{0}^{(i)-} \le h_{\max}, \ i = 1, 2 \ (18) \\ x_{i} / S_{i}^{2}, & \text{if } T_{L_{i}}^{-}(h_{0}^{(i)-}) = \min T_{L_{i}}^{-}(h_{0}^{(i)}), \ 0 < h_{0}^{(i)-} < x_{i} / S_{i}^{2} \end{cases}$$

After use numerical methods and computer programming (we have used MAPLE 10) the values $h_0^{(1)*}$, $h_0^{(2)*}$ are found from (15)-(18). Then with $h_0^{(1)*}$, $h_0^{(2)*}$, (13) and (14) are calculated n_1, n_2 , but n_1^*, n_2^* are selected from following:

$$n_i^* = \begin{cases} n_i^-(h_0^{(i)*}), & \text{if } n_i^-(h_0^{(i)*}) = [n_i^-(h_0^{(i)*})] \\ [n_i^-(h_0^{(i)*})], & \text{if } n_i^-(h_0^{(i)*}) \neq [n_i^-(h_0^{(i)*})] \end{cases}, \quad i = 1,2$$
(19)

Now q_1^*, q_2^* are calculated with (5). After that, from (12), we fined the time T^* , optimal control v^* and optimal parameters h_0^*, n^*, q^* from the following conditions:

$$T^{*}(a_{1},a_{2}) = \min\{T^{*}_{L_{1}}(a_{1},a_{2}), T^{*}_{L_{2}}(a_{1},a_{2})\}, T^{*}_{L_{i}}(a_{1},a_{2}) = T^{-}_{L_{i}}(a_{1},a_{2},h^{(i)*}_{0},n^{*}_{i})$$
(20)

$$\mathbf{v}^{*}, h_{0}^{*}, n^{*}, q^{*} = \begin{cases} \mathbf{v}_{L_{1}}^{*}, h_{0}^{(1)*}, n_{1}^{*}, q_{1}^{*}, & \text{if} \quad T^{*} = T_{L_{1}}^{*} = \min(T_{L_{1}}^{*}, T_{L_{2}}^{*}) \\ \mathbf{v}_{L_{2}}^{*}, h_{0}^{(2)*}, n_{2}^{*}, q_{2}^{*}, & \text{if} \quad T^{*} = T_{L_{2}}^{*} = \min(T_{L_{1}}^{*}, T_{L_{2}}^{*}) \end{cases}$$
(21)

4. Example. Suppose that we have a three-link electromechanical manipulator operating in the Cartesian coordinate system whose links move relative to each other in three mutually perpendicular directions. Under some assumptions [3,4], motion control of the manipulator gripper $X(x_1, x_2, x_3)$ in each coordinate x_i is kinematic, and the motion equations have the following simple form: $p_i k_i \dot{x}_i = u_i$, $|u_i| \le U_i$, i = 1,2,3. Here u_i the control voltage of the i-th motor, U_i is the maximum voltage of the i-th motor, k_i is the parameter of a motor, p_i

is a dimensional transmission ratio that connects the angular velocity of the armature of the i-th motor and the linear velocity of the corresponding link

 $\tilde{S}_i = p_i x_i$. Obviously that $x_i = v_i$, $|v_i| \le V_i$, i = 1,2,3, $v_i = u_i (p_i k_i)^{-1}$, $V_i = U_i (p_i k_i)^{-1}$. Suppose the following parameters are given: d = 1m, C = 0.05, $p_1 = 720m^{-1}$, $p_3 = 15000m^{-1}$, $k_1 = 0.3Nm \cdot A^{-1}$, $k_2 = 0.233Nm \cdot A^{-1}$, $k_3 = 0.316Nm \cdot A^{-1}$, $U_1 = U_2 = U_3 = 110V$.

So $V_1 = 0.509 n \cdot s^{-1}$, $V_2 = 0.724 m \cdot s^{-1}$, $V_3 = 0.023 m \cdot s^{-1}$. The programs for realization of the algorithm (12)-(20) are written with MAPLE 10.

If $a_1 = 0.5$, $a_2 = 0.8$, then $h^* = h_2^* = 0.0524 m$, $q^* = q_2^* = 0.00289 m$, $n^* = n_2^* = 19$, $T^* = T_{L_2}^* = 43.624 s$. Fig. 2 is surface of function T_{L_1} , that $0.01 \le h \le 0.1$, $0.01 \le V_3 \le 0.02$, $a_1 = 0.5$, $a_2 = 0.8$.

REFERENCES

- 1. **Melikyan A.A.** "Optimal guaranteeing control of the dynamic system with the search for the goal point", *Soviet Math. Dokl.*, 1991, vol. 43, no 1, pp. 193-197.
- 2. Avetisyan V.V. "Optimal search of a immobile object in rectangular domain, in minimal guaranteed time", Journal of Computer and Systems Sciences Interna-tional, 2002, vol. 41, no. 1, pp. 57-64.
- 3. Avetisyan V.V., BarseghyanA.R.

"The optimization as control in catching of goal object by robot-manipulator under the incomplete information," *Izv. NAN RA. Mechanics, 2004, No. 2, pp.58-68.*

4. Avetisyan V. V. "Control of the Search for an Immobile Object Aimed at Its Capture", *Journal of Computer and Systems Sciences International*, 2006, Vol. 45, No. 6, pp. 997–1005.

Information about authors;

V.V. Avetisyan

Doctor Sciences, Yerevan State University E-mail: <u>vanavet@yahoo.com</u>

Mojtaba Ghanbari

Islamic Azad University-Farahan-Iran E-mail: *ghanbari543@yahoo.com*

[2].

 E_1 .

[1].

,

,

•,

,

•

,

,

$$\frac{d^2 u_1}{dx^2} = -\frac{\tau(x)}{E_1 F_1}; \ |x| > a$$
(1)

$$\frac{du_{1}}{dx}\Big|_{x=\pm a} = \frac{P}{E_{1}F_{1}}$$
(1')
$$u_{1}(x) - , F_{1} - , \tau(x) - ,$$

P –

,

,

.

,

$$\frac{dU_1}{dx} = \left[\delta(x-a) - \delta(x+a) \right] \frac{P}{E_1 F_1} - \frac{\tau^*(x)}{E_1 F_1}, \quad -\infty < x < \infty$$
(2)

•

$$U_{1}(x) = \left[\theta(x-a) + \theta(-x-a)\right] \frac{du_{1}}{dx}$$

$$\tau^{*}(x) = \left[\theta(x-a) + \theta(-x-a)\right]\tau(x)$$

$$\delta(x) - , \theta(x) -$$

$$\tau^{*}(x), \qquad [3]$$

$$U_{2}(x,b) = \frac{1}{\pi h_{2}} \int_{-\infty}^{\infty} \left\{ A_{0} \frac{1}{x-t} + A_{1} \frac{x-t}{(x-t)^{2} + 4b^{2}} + A_{2} \frac{8b^{2}(x-t)}{\left[(x-t)^{2} + 4b^{2}\right]^{2}} + A_{3} \frac{2b^{2}(x-t)\left[(x-t)^{2} + 12b^{2}\right]}{\left[(x-t)^{2} + 4b^{2}\right]^{3}} \right\} \tau^{*}(t) dt, \quad -\infty < x < \infty \qquad (3)$$

$$U_{2}(x,b) = \frac{du_{2}(x,b)}{dx}, \quad u_{2}(x,b) = -\frac{du_{2}(x,b)}{dx}, \quad u_{2}(x,b) = -\frac{du_{2}(x,b)}{dx} = -\frac{du_{2}(x,b)}{$$

$$y = b, \ U_{2}(x,b) = U_{2}^{(1)}(x,b) + U_{2}^{(2)}(x,b),$$

$$U_{2}^{(1)}(x,b) = \left[\theta(x-a) + \theta(-x-a)\right] \frac{du_{2}(x,b)}{dx} - \infty < x < \infty$$

$$U_{2}^{(2)}(x,b) = \left[\theta(x+a) - \theta(x-a)\right] \frac{du_{2}(x,b)}{dx} - \infty < x < \infty$$

$$h_{2} - , b - ,$$

$$\begin{aligned} A_{0} &= \frac{\lambda^{*} + 3\mu_{2}}{4\mu_{2}\left(\lambda^{*} + 2\mu_{2}\right)}, \quad A_{1} &= \frac{\mu_{2}^{2} + \left(\lambda^{*} + 2\mu_{2}\right)^{2}}{4\mu_{2}\left(\lambda^{*} + \mu_{2}\right)\left(\lambda^{*} + 2\mu_{2}\right)} \\ A_{2} &= \frac{\lambda^{*} + 3\mu_{2}}{4\mu_{2}\left(\lambda^{*} + 2\mu_{2}\right)}, \quad A_{3} &= \frac{\lambda^{*} + \mu_{2}}{2\mu_{2}\left(\lambda^{*} + 2\mu_{2}\right)}, \quad \lambda^{*} &= \frac{2\lambda_{2}\mu_{2}}{\lambda_{2} + 2\mu_{2}} \\ \lambda_{2} &= \mu_{2} - \ddots \end{aligned}$$

$$\lambda_2 \quad \mu_2 = -$$

$$U_{1}(x) = U_{2}(x,b) - \infty < x < \infty$$
(4)
(2), (3) (4)
,

$$\tau^{*}(x) = \frac{H}{A_{0}} \int_{-\infty}^{\infty} \frac{d}{dx} R(x-t) U_{2}^{(2)}(t,b) dt + P\lambda g(x), \quad -\infty < x < \infty$$
(5)
$$R(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-i\sigma x}}{\lambda + \overline{K}(\sigma)} d\sigma, \quad \lambda = \frac{H}{A_{0}E_{1}F}$$

$$\overline{K}(\sigma) = |\sigma| + (B_1 |\sigma| + 2B_2 b\sigma^2 + 2B_3 b^2 |\sigma|^3) e^{-2|\sigma|b}$$

$$g(x) = R(x-a) - R(x+a), \quad B_1 = A_1 A_0^{-1}, \quad B_2 = A_2 A_0^{-1}, \quad B_3 = A_3 A_0^{-1}$$

$$, \quad \tau^*(x) = 0 \quad |x| < a, \quad (5)$$

$$\frac{H}{A_{0}}\int_{-a}^{a} R'(x-t)\frac{du_{2}(t,b)}{dt}dt + \lambda Pg(x) = 0, |x| < a$$
(6)
(6)

(6)
$$R(x)$$
.

$$\overline{R}(\sigma) = \frac{1}{\lambda + |\sigma|} - \frac{\overline{K}_{1}(\sigma)}{(\lambda + |\sigma|)(\lambda + |\sigma| + \overline{K}_{1}(\sigma))} = \frac{1}{\lambda + |\sigma|} + \overline{R}_{1}(\sigma)$$
(7)
$$\overline{K}_{1}(\sigma) = \left(B_{1}|\sigma| + 2B_{2}b\sigma^{2} + 2B_{2}b^{2}|\sigma|^{3}\right)e^{-2|\sigma|b}.$$
(7)
$$(7) \qquad (7)$$

•

$$R(x) = \frac{1}{\pi} \Big[\Psi(1) - \ln(\lambda x) \Big] + \frac{\lambda |x|}{2} + \sum_{m=1}^{\infty} \left\{ (-1)^m \frac{(\lambda x)^{2m}}{\pi (2m)!} \Big[\Psi(2m+1) - \ln(\lambda x) \Big] + \frac{1}{2} \frac{|\lambda x|^{2m+1}}{(2m+1)!} \right\}$$
(8)

$$x \quad \Psi(u) - .$$

(8)
$$R'(x)$$

 $R'(x) = -\frac{1}{\pi x} + \frac{\lambda}{2} \operatorname{sgn} x + R'_1(x)$ (9)
 $R'_1(x) = O(\ln|x|) \quad |x| \to 0.$

(6)
$$t = at, x = ax$$
 (9),

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(at)}{t-x} dt + \int_{-1}^{1} \left\{ aR'_{1} \left[a(x-t) \right] + \frac{\lambda a}{2} \operatorname{sgn}(x-t) \right\} \varphi(at) dt + \lambda Pg(ax) = 0 \quad (10)$$
- 24 -

$$\begin{split} \varphi(at) &= u_2'(at) - 1 < t < 1. \\ &; (10). \\ (10) \\ \varphi(at) &= X_0 F(t) + \lambda P \Psi(t) \\ F(t) &= \frac{1}{\sqrt{1 - t^2}} + \frac{1}{\sqrt{1 - t^2}} \sum_{n=1}^{\infty} Y_{2n}^{(1)} T_{2n}(t) \\ \Psi(t) &= \frac{1}{\sqrt{1 - t^2}} \sum_{n=1}^{\infty} Y_{2n}^{(2)} T_{2n}(t), \quad T_k(u) = \cos(k \arccos u), \quad k = 0, 1, 2, ... \\ \varphi(at). \\ Y_{2n}^{(j)} &(j = 1, 2) \\ Y_{2m}^{(j)} &= \sum_{n=1}^{\infty} K_{2m,2n} \quad Y_{2n}^{(j)} = l_m^{(j)}, \quad (j = 1, 2) \quad m = 1, 2, ... \\ K_{2m,2n} &= \frac{a}{\pi} \int_{-1-1}^{1} \{ 2R_1' [a(x-t)] + \lambda \operatorname{sgn}(x-t) \} \frac{\sqrt{1 - x^2}}{\sqrt{1 - t^2}} U_{2m-1}(x) T_{2n}(t) dt dx \\ l_m^{(1)} &= -K_{2m,0} = \frac{a}{\pi} \int_{-1-1}^{1} \{ 2R_1' [a(x-t)] + \lambda \operatorname{sgn}(x-t) \} \frac{\sqrt{1 - x^2}}{\sqrt{1 - t^2}} U_{2m-1}(x) dt dx \\ l_m^{(2)} &= -g_m = -\frac{2}{\pi} \int_{-1}^{1} \{ R [a(x-1)] - R [a(x+1)] \} \sqrt{1 - x^2} U_{2m-1}(x) dx \\ \vdots \\ \frac{1}{\pi} \int_{-1}^{1} \frac{T_k(t)}{\sqrt{t - x}\sqrt{1 - t^2}} dt = U_{k-1}(x) \qquad |x| < 1. \\ X_0 \end{split}$$

$$a\int_{1}^{\infty}\tau(as)ds=P$$

.

•

, .

· ·- · ·, : 0019, : 0019, , . . .: (37410) 73-76-14 24 E-mail: mechins@ sci.am

5.

. .- . ., : , . 39-19-39 128 . .

)

[3-5]

[1],

(

[2]

,

_

$$u_{j}(_{u}, \{, \pm h, t\}) = \overline{u}_{j}^{\pm}(_{u}, \{, t\}), \quad j = _{u}, \{, \mathsf{X}$$

$$\uparrow_{j\mathsf{X}}(_{u}, \{, \pm h, t\}) = \uparrow_{jz}^{\pm}(_{u}, \{, t\}), \quad j = _{u}, \{, \mathsf{X}$$

$$(1.1)$$

$$\begin{aligned} \frac{\partial}{\partial \Gamma} \left(H_2 H_3 \dagger_{\Gamma\Gamma} \right) + \frac{\partial}{\partial S} \left(H_1 H_3 \dagger_{\GammaS} \right) + \frac{\partial}{\partial X} \left(H_1 H_2 \dagger_{\GammaX} \right) - \dagger_{SS} H_3 \frac{\partial H_2}{\partial \Gamma} - \\ - \dagger_{XX} H_2 \frac{\partial H_3}{\partial \Gamma} + \dagger_{\GammaS} H_3 \frac{\partial H_1}{\partial S} + \dagger_{\GammaX} H_2 \frac{\partial H_1}{\partial X} = \dots \ddot{u}_{\Gamma} H_1 H_2 H_3 \\ H_1 &= (1 + k_{\Gamma} X), \quad H_2 = (1 + k_{S} X), \quad H_3 = 1, \quad (\Gamma, S, X; 1, 2, 3), \\ col \left[e_{\Gamma\Gamma} - \Gamma_{11} T, \dots, e_{\GammaS} - \Gamma_{12} T \right] = \left\| a_{ij} \right\|_{6\times 6} col \left[\dagger_{\Gamma\Gamma} , \dagger_{SS} , \dots, \dagger_{\GammaS} \right] \\ col \left[\dagger_{\Gamma\Gamma} + X_{11} T, \dots, \dagger_{\GammaS} + X_{12} T \right] = \left\| b_{ij} \right\|_{6\times 6} col \left[e_{\Gamma\Gamma} , e_{SS} , \dots, e_{\GammaS} \right] \end{aligned} \tag{1.3}$$

$$\begin{aligned} \left\| b_{ij} \right\|_{6\times 6} &= \left\| a_{ij} \right\|_{6\times 6}^{-1} \quad a_{ij} = a_{ij}, \quad b_{ij} = b_{ij} \\ e_{\Gamma\Gamma} &= \frac{1}{H_1} \frac{\partial u_{\Gamma}}{\partial \Gamma} + \frac{1}{H_1 H_2} \frac{\partial H_1}{\partial S} u_S + \frac{1}{H_1 H_3} \frac{\partial H_1}{\partial X} u_X \\ e_{\GammaS} &= \frac{H_1}{H_2} \frac{\partial}{\partial S} \left(\frac{u_{\Gamma}}{H_1} \right) + \frac{H_2}{H_1} \frac{\partial}{\partial \Gamma} \left(\frac{u_S}{H_2} \right), \quad (\Gamma, S, X; 1, 2, 3) \end{aligned}$$

$$H_{1,}H_{2},H_{3} - , A,B - , k_{r} = \frac{1}{AB}\frac{\partial A}{\partial s}, k_{s} = \frac{1}{AB}\frac{\partial B}{\partial r} - , k_{ij} - , r_{ij} \quad (i,j = 1,2,3) - , K_{s} = \{ . \}$$

$$: \Gamma = {}_{n}, \quad S = \{, \\ A = r, B = R + r \sin_{n}, R_{1} = r, R_{2} = (R + r \sin_{n}) / \sin_{n}, k_{\Gamma} = 0, \\ k_{S} = \cos_{n} / (R + r \sin_{n}), \quad \Gamma_{ij} = \Gamma_{ij} ({}_{n}, \{) \quad i, j = 1, 2, 3 \\ a_{ij} = a_{ij} ({}_{n}, \{), \quad b_{ij} = b_{ij} ({}_{n}, \{) \quad i, j = 1, 2, \cdots, 6; \\ \Gamma_{13} = \Gamma_{23} = x_{13} = x_{23} = 0 \\ a_{1j} = a_{2j} = a_{3j} = a_{6j} = b_{1j} = b_{2j} = b_{3j} = b_{6j} = 0 \quad j = 4, 5, \end{cases}$$
(1.4)

$$\overline{Q}(t) = \sqrt{\frac{2}{f}} \int_{0}^{\infty} Q(\check{S}) \sin\check{S}t \, d\check{S}, \quad Q(\check{S}) = \sqrt{\frac{2}{f}} \int_{0}^{\infty} \overline{Q}(t) \sin\check{S}t \, dt \quad (Q,T) \quad (1.5)$$

$$(, , , ,)$$

$$K$$

$$\begin{aligned} & \ddagger_{rj} = (1 + x / R_2) \dagger_{rj} \quad j = r, s, x, \ \ \sharp_{sj} = (1 + x / R_1) \dagger_{sj} \\ & \ddagger_{xx} = (1 + x / R_1) (1 + x / R_2) \dagger_{xx}, \ \ j = r, s, x \end{aligned}$$
(1.6)

-

,

$$Q(_{u}, \{, \mathbf{X}, \check{\mathbf{S}}) = \mathbf{V}^{t_{Q}} \sum_{s=0}^{S} \mathbf{V}^{s} Q^{(s)}(\langle, \mathbf{Y}, \mathbf{Y}, \check{\mathbf{S}}), \quad \mathbf{t}_{u} = 0, \mathbf{t}_{\dagger} = -1 \quad (1.8)$$

$$(_{"}, \{, \mathsf{X}, \check{\mathsf{S}}\}) = \mathsf{V}^{-1} \sum_{s=0}^{S} \mathsf{V}^{s-(s)}(<, \mathsf{Y}, `, \check{\mathsf{S}})$$

$$(1.9), (1.10)$$

$$(1.9)$$

-

$$b_{33} \frac{\partial^2 w^{(s)}}{\partial'^2} + ... \check{S}^2 h^2 w^{(s)} = x_{33} \frac{\partial T^{(s)}}{\partial'} + R_w^{(s-1)}$$

$$b_{45} \frac{\partial^2 v^{(s)}}{\partial'^2} + b_{55} \frac{\partial^2 u^{(s)}}{\partial'^2} + ... \check{S}^2 h^2 u^{(s)} = R_u^{(s-1)}$$

$$(1.10)$$

$$\begin{split} R_{w}^{(s-1)} &= r_{1}^{\dagger} \ddagger_{rr}^{(s-1)} + r_{2}^{\dagger} \ddagger_{ss}^{(s-1)} - \frac{\partial \ddagger_{rx}^{(s-1)}}{\partial'} - \frac{r}{B} \frac{\partial \ddagger_{sx}^{(s-1)}}{\partial'} - rk_{s}^{\dagger} \ddagger_{rx}^{(s-1)} - \\ &- ...\%_{0}^{2} h^{2} L(w^{(s-1)}) - \frac{\partial}{\partial'} (b_{13} e_{rr*}^{(s-1)} + b_{23} e_{ss*}^{(s-1)} + b_{33} e_{xx*}^{(s-1)} + b_{36} e_{rs*}^{(s-1)}) \\ R_{u}^{(s-1)} &= \frac{r}{AB} \frac{\partial}{\partial \varsigma} (B \ddagger_{rr}^{(s-1)}) + rk_{s}^{\dagger} \ddagger_{ss}^{(s-1)} - \frac{r}{AB} \frac{\partial}{\partial y} (A \ddagger_{sr}^{(s-1)}) - rk_{r}^{\dagger} \ddagger_{rs}^{(s-1)} - \\ &- r_{1} \frac{\partial \ddagger_{rx}^{(s-1)}}{\partial'} - ...\%_{0}^{2} h^{2} L(u^{(s-1)}) - b_{45} \frac{\partial}{\partial'} e_{sx*}^{(s-1)} - b_{55} \frac{\partial}{\partial'} e_{rx*}^{(s-1)} - \\ &- \frac{2r}{R_{1}} \ddagger_{rx}^{(s-1)}, (\Gamma, S; <, y; u, v; A, B; 1, 2; 4, 5) \\ e_{rr*}^{(s-1)} &= \frac{r}{A} \frac{\partial u^{(s-1)}}{\partial \varsigma} + k_{r} v^{(s-1)} + r_{1} w^{(s-1)} + \\ &+ r_{2} \left(\frac{r}{A} \frac{\partial u^{(s-2)}}{\partial \varsigma} + k_{r} v^{(s-2)} + r_{1} w^{(s-2)} \right) - L(T^{(s-1)}) - \\ &- r (a_{11} r_{1}^{\dagger} r_{rr}^{(s-1)} + a_{12} r_{2}^{\ddagger} r_{ss}^{(s-1)} + a_{16} r_{1}^{\ddagger} r_{ss}^{(s-1)}) (\Gamma, S; <, y; u, v; A, B, 1, 2) \end{split}$$

$$e_{XX*}^{(s-1)} = L\left(\frac{\partial w^{(s-1)}}{\partial'} - T^{(s-1)}\right) - i (a_{13}r_{1}^{\dagger}t_{rr}^{(s-1)} + a_{23}r_{2}^{\dagger}t_{ss}^{(s-1)} + a_{36}r_{1}^{\dagger}t_{rs}^{(s-1)})$$

$$e_{SX*}^{(s-1)} = L\left(\frac{\partial v^{(s-1)}}{\partial'}\right) - r_{2}v^{(s-1)} - i r_{1}r_{2}v^{(s-2)} + \frac{r}{B}\left(\frac{\partial w^{(s-1)}}{\partial y} + i r_{1}\frac{\partial w^{(s-2)}}{\partial y}\right) - a_{44}i r_{2}^{\dagger}t_{sx}^{(s-1)} - a_{45}i r_{1}^{\dagger}t_{rx}^{(s-1)} (r,s; <,y; u,v; A,B; 1,2; 4,5)$$

$$\begin{split} e_{\Gamma S*}^{(s-1)} &= r \Biggl(\frac{1}{B} \frac{\partial u^{(s-1)}}{\partial y} - k_{S} v^{(s-1)} \Biggr) + rr_{I} \Biggl(\frac{1}{B} \frac{\partial u^{(s-2)}}{\partial y} - k_{S} v^{(s-2)} \Biggr) - \\ &- L(T^{(s-1)}) + r \Biggl(\frac{1}{A} \frac{\partial v^{(s-1)}}{\partial \zeta} - k_{\Gamma} u^{(s-1)} \Biggr) + rr_{I} \Biggl(\frac{1}{A} \frac{\partial v^{(s-2)}}{\partial \zeta} - k_{\Gamma} u^{(s-2)} \Biggr) + \\ &+ a_{16} r_{I}^{\dagger} r_{\Gamma\Gamma}^{(s-1)} + a_{26} r_{I}^{\dagger} r_{\GammaS}^{(s-1)} + a_{66} r_{I}^{\dagger} r_{\GammaS}^{(s-1)} \\ L(Q^{(s-1)}) &= rr_{I} (r_{I} + r_{2})Q^{(s-1)} + r_{I}r_{I}2Q^{(s-2)}, \quad r_{I} = r/R_{I} = 1, \quad r_{2} = r/R_{2} \end{split}$$

$$u^{(s)} = (a - b_{44})_{1}^{2} (M_{u}^{(s)} \sin)_{1}^{\prime} + N_{u}^{(s)} \cos)_{1}^{\prime} + + b_{45} + b_{45}$$

$$\begin{aligned} & \left. \right\}_{3} = \frac{1}{2} \left\{ h - \frac{1}{2} \right\}_{1,2}^{2} = a \left(b_{44} + b_{55} \pm \sqrt{c} \right) \right\}_{2,3}^{2} \left(2\Delta \right), \quad a = ...\tilde{S}^{2}h^{2} \\ & c = (b_{55} - b_{44})^{2} + 4b_{45}^{2}, \quad \Delta = b_{44}b_{55} - b_{45}^{2} \\ & I_{\Gamma}^{(s)}(`) = \frac{1}{\beta_{1}} \int_{0}^{'} \Phi_{\Gamma}^{(s)}(\ddagger) \sin \left\{ 1(`-\ddagger)d\ddagger (\Gamma, S, \right\}; \quad 1,2,3) \\ & \Delta_{\bullet} = a^{2}\sqrt{c} \left(b_{55} - b_{44} - \sqrt{c} \right) / (2\Delta) \\ & \Phi_{\Gamma}^{(s)}(`) = \left((a - b_{55})^{2}_{2} \right) R_{u}^{(s-1)}(`) - b_{45} \right\}_{2}^{2} R_{v}^{(s-1)}(`) \right) / \Delta_{\bullet} \\ & \Phi_{\chi}^{(s)}(`) = \chi_{33} \frac{\partial T^{(s)}}{\partial'} / b_{33} + R_{w}^{(s-1)}(`) / b_{33}, \ (\Gamma, S; \ u, v; \ 1,2; \ 4,5) \\ & (1.13) \end{aligned}$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.1), (1.2).$$

$$(1.2), (1.2).$$

$$(1.2), (1.2), (1.2).$$

$$(1.2), (1.2), (1.2).$$

$$(1.2), (1.2), (1.2).$$

$$(1.2), (1.2),$$

2.

$$-I_{s}^{(s)}('=\pm 1)) / \Delta_{\bullet} \quad (\Gamma, S; u, v; 1, 2; 4, 5), \sin 2\}_{1} \neq 0$$

$$u^{\pm(0)} = u_{\Gamma}^{\pm} / r, \quad u^{\pm(s)} = 0, \quad s \neq 0 \quad (\Gamma, S, X; u, v, w \ 1, 2, 3)$$

$$, \qquad (1.1) \qquad -$$

$$() \qquad , \qquad -$$

$$\sin 2\}_{j} = 0 \quad j = 1, 2, 3, \quad \}_{3} = \frac{f}{2} \implies \mathscr{M}_{rez.} = \frac{fk}{2h} \sqrt{\frac{b_{33}}{\dots}}$$
$$\}_{(1,2)} = \frac{f}{2} \implies \mathscr{M}_{rez.} = \frac{fk}{2h} \sqrt{\frac{2\Delta}{\dots(b_{44} + b_{55} \pm \sqrt{c})}}$$
(2.2)

$$M_{w}^{(s)} = \frac{1}{2\cos\beta_{3}} (F_{x}^{+(s)} + F_{x}^{-(s)}), \quad N_{w}^{(s)} = \frac{1}{2\sin\beta_{3}} (F_{x}^{-(s)} - F_{x}^{+(s)})$$

$$M_{u}^{(s)} = \frac{\beta_{2}}{2\cos\beta_{1}} \Big[(ab_{44} - \Delta)^{2}_{2})(F_{r}^{-(s)} - F_{r}^{+(s)}) - ab_{45}(F_{s}^{-(s)} - F_{s}^{+(s)}) \Big]$$

$$N_{u} = \frac{\beta_{2}}{2\sin\beta_{1}} \Big[(ab_{44} - \Delta)^{2}_{2})(F_{r}^{-(s)} - F_{r}^{+(s)}) - ab_{45}(F_{s}^{-(s)} - F_{s}^{+(s)}) \Big]$$

$$(\Gamma, S; u, v; 1, 2; 4, 5) \quad \sin 2\}_{j} \neq 0, \quad j = 1, 2, 3$$

$$(S_{s}) = \frac{1}{2} \sum_{j \neq 0} (S_{s}) + \frac{1}$$

$$F_{x}^{\pm(s)} = \frac{1}{\beta_{3}b_{33}} \left(\ddagger_{xx}^{\pm(s)} - \ddagger_{xx\bullet}^{(s)}(' = \pm 1) \right) - \frac{1}{\beta_{3}} \frac{\partial}{\partial'} \left[I_{x}^{(s)}(') \right]_{=\pm 1}$$

$$F_{r}^{\pm(s)} = \frac{1}{\Delta_{\bullet\bullet}} \left\{ \ddagger_{rx}^{\pm(s)} - \ddagger_{rx\bullet}^{(s)}(' = \pm 1) - \frac{\partial}{\partial'} \left[b_{45} I_{s}^{(s)}(') + b_{55} I_{r}^{(s)}(') \right]_{=\pm 1} \right\}$$

$$(r, s; 4,5) \quad \Delta_{\bullet\bullet} = \beta_{1} \beta_{2} \Delta \Delta_{\bullet}$$

$$\begin{aligned} \ddagger_{XX\bullet}^{(s)} &= b_{13}e_{\Gamma\Gamma*}^{(s-1)} + b_{23}e_{SS*}^{(s-1)} + b_{33}e_{XX*}^{(s-1)} - X_{33}T^{(s)} \\ \ddagger_{SX\bullet}^{(s-i)} &= b_{44}e_{SX*}^{(s-1)} + b_{45}e_{\GammaX\bullet}^{(s-1)}, \ (\Gamma, S; 4,5) \end{aligned}$$
(2.4)

$$\begin{aligned} \ddagger_{xx}^{\pm(0)} &= \dagger_{xx}^{\pm}, \ \ddagger_{xx}^{\pm(1)} = \mathsf{V}(r_1 + r_2) \dagger_{xx}^{\pm}, \ \ddagger_{xx}^{\pm(2)} = \mathsf{V}^2 r_1 r_2 \dagger_{xx}^{\pm} \\ \ddagger_{xx}^{\pm(s)} &= 0, \ s > 2; \ \ddagger_{rx}^{\pm(0)} = \dagger_{rx}^{\pm}, \ \ddagger_{rx}^{\pm(1)} = \mathsf{V}r_2 \dagger_{rx}^{\pm}, \ \ddagger_{rx}^{\pm(s)} = 0, \ s > 1 \\ \ddagger_{sx}^{\pm(0)} &= \dagger_{sx}^{\pm}, \ \ddagger_{sx}^{\pm(1)} = \mathsf{V}r_1 \dagger_{sx}^{\pm}, \ \ddagger_{sx}^{\pm(s)} = 0, \ s > 1 \end{aligned}$$

$$(1.9), (1.13), (2.1)-(2.5)$$

•

,

(2.3) 000

,

$$(:-f < ,, <0), t_{rr}, t_{rs}, t$$

$$t_{rr}, t_{rs}, t_{rx}, t_{xx}$$

(0<,,

(2.1)

r (), R

,

,

,

	h=0.1r		h=0.01r	
	R=2r	R=1.5r	R=2r	R=1.5r
\dagger_A/\ddagger_A	0.968	0.962	0.997	0.997
\dagger_B/\ddagger_B	1.111	1.253	1.010	1.020
† _c /‡ _c	1.034	1.042	1.003	1.004
\dagger_D/\ddagger_D	0.909	0.833	0.990	0.990

(1.13)

,

- 33 -

(

[8,9] ,,

"

INTAS-06-1000017-8886.

•

".

.

-

1.					. :	-	,
	1962.100 .						
2.	510	•	•			:	,1976.
2	512.						
3.			<i>A</i> 1 <i>A</i>				-
4.		, 1 <i>991</i> · ·,	. +1+ .			200	-
5			,		•	, 200	5.408 .
5.		•••	• •				// .
	198650.	. 2.	. 271-278.				
6.	//	· · ·				: -	, 1984.
	C. 51-58.						
7.				//			1984
_	.37. 6.	. 3-15.		,,	·	·	.1901.
8.		• •,		· ., :	, 1980. 28	36 .	

9. . .

2006. .59. 4. . 24-31.

:

, . .- . .

.// . . .

-mail: aghal@mechins.am

· .- · ., ,

. : . 12, . 6,0028, , .: (37410) 270828 -mail:<u>gevorgyanrs@mail.ru</u>
[1,2].

,

•

[3-6]

•

, .

,

1.

,

,

:

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = \rho \frac{\partial^2 u}{\partial t^2} , \quad \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = \rho \frac{\partial^2 v}{\partial t^2}$$
(1.1)

,

$$\frac{\partial u}{\partial x} = \beta_{11}\sigma_{xx} + \beta_{12}\sigma_{yy} , \frac{\partial v}{\partial y} = \beta_{12}\sigma_{xx} + \beta_{22}\sigma_{yy} , \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = a_{66}\sigma_{xy}$$
(1.2)

$$\beta_{ij} = \frac{1}{a_{33}} \left(a_{ij}a_{33} - a_{i3}a_{j3} \right), \quad i, j = 1, 2, a_{66} = \frac{1}{G_{12}}$$

$$D = \left\{ (x, y): 0 \le x \le l, -h \le y \le h, h < < l \right\},$$

$$y = \pm h$$

$$\sigma_{yy}(x,n) = 0, \ \sigma_{xy}(x,n) = 0, \ \sigma_{yy}(x,-n) = 0, \ \sigma_{xy}(x,-n) = 0$$
 (1.3)

$$\sigma_{xx}(x, y, t) = \sigma_{11}(x, y) \exp(i\omega t), \ \sigma_{xy}(x, y, t) = \sigma_{12}(x, y) \exp(i\omega t)$$

$$\sigma_{yy}(x, y, t) = \sigma_{22}(x, y) \exp(i\omega t), \ u(x, y, t) = u_x(x, y) \exp(i\omega t) \quad (1.4)$$

$$v(x, y, t) = u_y(x, y) \exp(i\omega t)$$

$$\omega - (1.4)$$

$$(1.1) \qquad (1.2), \qquad (1.4)$$

$$\xi = x/l, \quad \zeta = y/h, \quad U = u_x/l, \quad V = u_y/l, \qquad (1.4)$$

$$\frac{\partial \sigma_{11}}{\partial \xi} + \varepsilon^{-1} \frac{\partial \sigma_{12}}{\partial \zeta} + \varepsilon^{-2} \omega_*^2 U = 0, \quad \frac{\partial \sigma_{12}}{\partial \xi} + \varepsilon^{-1} \frac{\partial \sigma_{22}}{\partial \zeta} + \varepsilon^{-2} \omega_*^2 V = 0$$

$$\frac{\partial U}{\partial \xi} = \beta_{11} \sigma_{11} + \beta_{12} \sigma_{22}, \quad \varepsilon^{-1} \frac{\partial V}{\partial \zeta} = \beta_{12} \sigma_{11} + \beta_{22} \sigma_{22} \qquad (1.5)$$

$$\varepsilon^{-1} \frac{\partial U}{\partial \zeta} + \frac{\partial V}{\partial \xi} = a_{66} \sigma_{12}, \quad \omega_*^2 = \rho h^2 \omega^2, \quad \varepsilon = h/l$$

$$x = 0, l$$

$$I = I^{\text{int}} + I_b^I + I_b^{II}.$$
(1.6)

$$\sigma_{jk}^{\text{int}} = \varepsilon^{-1+s} \sigma_{jk}^{(s)}(\xi,\zeta) , (U^{\text{int}},V^{\text{int}}) = \varepsilon^{s}(U^{(s)},V^{(s)})$$

$$\omega_{*}^{2} = \varepsilon^{s} \omega_{**}^{2} , s = \overline{0,N}$$
(1.7)

$$(1.7) \quad (1.5), \\ (\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right) = \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k}b_{n-k}\right)\right) \\ \varepsilon, \\ \frac{\partial \sigma_{11}^{(s-1)}}{\partial \xi} + \frac{\partial \sigma_{12}^{(s)}}{\partial \zeta} + \omega_{*k}^{2}U^{(s-k)} = 0, \\ \frac{\partial U^{(s-1)}}{\partial \xi} = \beta_{11}\sigma_{11}^{(s)} + \beta_{12}\sigma_{22}^{(s)}, \\ \frac{\partial U^{(s-1)}}{\partial \zeta} = \beta_{12}\sigma_{11}^{(s)} + \beta_{22}\sigma_{22}^{(s)} \\ \frac{\partial U^{(s)}}{\partial \zeta} + \frac{\partial V^{(s-1)}}{\partial \xi} = a_{66}\sigma_{12}^{(s)} \\ (1.8)$$

$$(1.5)$$

$$\sigma_{11}^{(s)} = \frac{1}{\Delta_1} \left(-\beta_{12} \frac{\partial V^{(s)}}{\partial \zeta} + \beta_{22} \frac{\partial U^{(s-1)}}{\partial \xi} \right), \ \sigma_{22}^{(s)} = \frac{1}{\Delta_1} \left(\beta_{11} \frac{\partial V^{(s)}}{\partial \zeta} - \beta_{12} \frac{\partial U^{(s-1)}}{\partial \xi} \right)$$
$$\sigma_{12}^{(s)} = \frac{1}{a_{66}} \left(\frac{\partial U^{(s)}}{\partial \zeta} + \frac{\partial V^{(s-1)}}{\partial \xi} \right), \ \Delta_1 = \beta_{11}\beta_{22} - \beta_{12}^2$$
(1.9)

$$\begin{aligned}
 \sigma_{12}^{(s)}, \sigma_{22}^{(s)} & (1.8), \\
 U^{(s)}, V^{(s)} & \\
 \frac{\partial^2 U^{(s)}}{\partial \zeta^2} + a_{66} \omega_{*k}^2 U^{(s-k)} = f_u^{(s)}, \quad k = \overline{0, s} \\
 f_u^{(s)} &= -\left(a_{66} \frac{\partial \sigma_{11}^{(s-1)}}{\partial \xi} + \frac{\partial^2 V^{(s-1)}}{\partial \xi \partial \zeta}\right) & (1.10) \\
 \frac{\partial^2 V^{(s)}}{\partial \zeta^2} + \frac{\Delta_1}{\beta_{11}} \omega_{*k}^2 V^{(s-k)} = f_v^{(s)}, \quad k = \overline{0, s} \\
 f_v^{(s)} &= \frac{\beta_{12}}{\beta_{11}} \frac{\partial^2 U^{(s-1)}}{\partial \xi \partial \zeta} - \frac{\Delta_1}{\beta_{11}} \frac{\partial \sigma_{12}^{(s-1)}}{\partial \xi} \\
 s = 0 \qquad U^{(0)}, \sigma^{(0)}
 \end{aligned}$$

$$U^{(0)} = C_1^{(0)}(\xi) \sin \sqrt{a_{66}} \omega_{*0} \zeta + C_2^{(0)}(\xi) \cos \sqrt{a_{66}} \omega_{*0} \zeta$$
(1.12)
$$\sigma_{12}^{(0)} = \frac{\omega_{*0}}{\sqrt{a_{66}}} \Big(C_1^{(0)}(\xi) \cos \sqrt{a_{66}} \omega_{*0} \zeta - C_2^{(0)}(\xi) \sin \sqrt{a_{66}} \omega_{*0} \zeta \Big)$$
$$\sigma_{12}(\xi, \pm 1) = 0,$$

$$\omega_{*0} \\) \sin \sqrt{a_{66}} \omega_{*0} = 0 \implies \omega_{*0n}^{I} = \frac{\pi n}{\sqrt{a_{66}}}, \ n \in N$$
 (1.13)

)
$$\cos\sqrt{a_{66}}\omega_{*0} = 0 \implies \omega_{*0n}^{II} = \frac{\pi}{2\sqrt{a_{66}}}(2n+1), \ n \in N$$

:

)
$$U_n^{I(0)} = C_{2n}^{(0)}(\xi) \cos \pi n \zeta$$
,) $U_n^{II(0)} = C_{1n}^{(0)}(\xi) \sin \frac{\pi}{2} (2n+1)\zeta$ (1.14)

$$V^{(0)} = C_{3}^{(0)}(\xi) \sin \sqrt{\frac{\Delta_{1}}{\beta_{11}}} \omega_{*0} \zeta + C_{4}^{(0)}(\xi) \cos \sqrt{\frac{\Delta_{1}}{\beta_{11}}} \omega_{*0} \zeta,$$

$$\sigma_{22}^{(0)} = \sqrt{\frac{\Delta_{1}}{\beta_{11}}} \omega_{*0} \left(C_{3}^{(0)}(\xi) \cos \sqrt{\frac{\Delta_{1}}{\beta_{11}}} \omega_{*0} \zeta - C_{4}^{(0)}(\xi) \sin \sqrt{\frac{\Delta_{1}}{\beta_{11}}} \omega_{*0} \zeta \right)$$

$$\sigma_{22}^{(0)}(\xi, \pm 1) = 0,$$

(1.15)

)
$$\omega_{*0n}^{III} = \sqrt{\frac{\beta_{11}}{\Delta_1}} \pi n, \quad n \in N, \quad V_n^{III(0)} = C_{4n}^{(0)} \cos \pi n \zeta$$
 (1.16)
) $\omega_{*0n}^{IV} = \sqrt{\frac{\beta_{11}}{\Delta_1}} \frac{\pi}{2} (2n+1), \quad n \in N, \quad V_n^{IV(0)} = C_{3n}^{(0)} \sin \frac{\pi}{2} (2n+1) \zeta$
 $\omega_{*0} = \omega_{*0n}^{I}, \qquad (1.13,) - (1.15), \qquad (1.15), \qquad$

$$U_{n}^{I(0)} = C_{2n}^{(0)}(\xi) \cos \pi n \zeta, \quad \sigma_{12n}^{I(0)} = -\frac{\pi n}{a_{66}} C_{2n}^{(0)} \sin \pi n \zeta,$$

$$V_{n}^{I(0)} = 0, \quad \sigma_{11n}^{I(0)} = 0, \quad \sigma_{22n}^{I(0)} = 0$$

$$\omega_{*0} = \omega_{*0n}^{II}$$
(1.17)

$$U_{n}^{II(0)} = C_{1n}^{(0)}(\xi) \sin \frac{\pi}{2} (2n+1)\zeta, \quad \sigma_{12n}^{I(0)} = \frac{\pi(2n+1)}{2a_{66}} C_{1n}^{(0)} \cos \frac{\pi}{2} (2n+1)\zeta$$

$$V_{n}^{II(0)} = 0, \quad \sigma_{11n}^{II(0)} = 0, \quad \sigma_{22n}^{II(0)} = 0 \quad (1.18)$$

$$\omega_{*0} = \omega_{*0n}^{III}$$

$$V_n^{III(0)} = C_{4n}^{(0)}(\xi) \cos \pi n \zeta, \quad \sigma_{22n}^{III(0)} = -\frac{\pi n \beta_{11}}{\Delta_1} C_{4n}^{(0)} \sin \pi n \zeta$$
(1.19)

$$\sigma_{11n}^{III(0)} = \frac{\eta_{II} p_{12}}{\Delta_1} C_{4n}^{(0)} \sin \pi n \zeta, \quad \sigma_{12n}^{III(0)} = 0, \quad U_n^{III(0)} = 0$$

$$\omega_{*0} = \omega_{*0n}^{IV}$$

$$V_n^{IV(0)} = C_{3n}^{(0)}(\xi) \sin \frac{\pi}{2} (2n+1)\zeta, \quad \sigma_{22n}^{IV(0)} = \frac{\beta_{11}}{\Delta_1} \frac{\pi}{2} (2n+1)C_{3n}^{(0)} \cos \frac{\pi}{2} (2n+1)\zeta$$

$$\sigma_{11n}^{IV(0)} = -\frac{\beta_{12}}{\Delta_1} \frac{\pi}{2} (2n+1)C_{3n}^{(0)} \cos \frac{\pi}{2} (2n+1)\zeta, \quad \sigma_{12n}^{IV(0)} = 0, \quad U_n^{IV(0)} = 0 \quad (1.20)$$

$$(1.17), \quad (1.18)$$

$$(1.19), \quad (1.20) - ..., \quad (1.17), \quad (1.18)$$

$$\left\{ \varphi_n = \cos \pi n \zeta \right\} \qquad \left\{ \psi_n = \sin \frac{\pi}{2} (2n+1)\zeta \right\}$$
$$-1 \le \zeta \le 1 .$$
$$s = 1$$

2. (1.10)

$$\frac{\partial^2 U_n^{(1)}}{\partial \zeta^2} + a_{66} \omega_{*0n}^2 U_n^{(1)} + a_{66} \omega_{*1n}^2 U_n^{(0)} = f_{un}^{(1)} \qquad (2.1)$$

$$U_n^{(1)} \quad \omega_{*1n} \, . \qquad \omega_{*0} = \omega_{*0n}^I = \pi n / \sqrt{a_{66}} \, ,$$

$$(1.10) \quad (1.17) \quad f_{un}^{(1)} = 0 \, . \qquad (2.1)$$

$$U_{n}^{(1)} = \sum_{k=0}^{\infty} a_{nk} U_{k}^{I(0)} = a_{nk} U_{k}^{I(0)} , \quad k = \overline{0, \infty}$$

$$U_{k}^{I(0)} - , \qquad (2.2)$$

$$-1 \le \zeta \le 1$$
. (2.2) (2.1),

$$U_m^{I(0)}$$
 ζ [-1;1],

$$a_{nk}a_{66}\left((\omega_{*0n}^{I})^{2} - (\omega_{*0k}^{I})^{2}\right)\int_{-1}^{1} U_{k}^{I(0)}U_{m}^{I(0)}d\zeta + (\omega_{*1n}^{I})^{2}a_{66}\int_{-1}^{1} U_{n}^{I(0)}U_{m}^{I(0)}d\zeta = 0 \quad (2.3)$$

$$m = k \neq n, \qquad (2.3) \qquad a_{nm} = 0. \qquad m = n = k$$

$$\omega_{*1n}^{I} = 0. \qquad \qquad [7,8]. \qquad ,$$

$$\frac{1}{\left\|\boldsymbol{U}_{n}^{I(0)}\right\|^{2}}\int_{-1}^{1} \left[\boldsymbol{U}_{n}^{I(0)} + \varepsilon \boldsymbol{U}_{n}^{I(1)}\right]^{2} d\zeta = 1$$
(2.4)
(2.2)

$$\int_{-1}^{1} a_{nk} U_{n}^{I(0)} U_{k}^{I(0)} d' = 0, \quad n \neq k, \quad a_{nn} \int_{-1}^{1} (U_{n}^{I(0)})^{2} d' = 0$$
(2.5)
(2.5)

$$a_{nn}=0. \qquad , \qquad s=1$$

$$U_{n}^{I(1)} = 0, \ \omega_{*1n}^{I} = 0$$
(2.6)

$$s = 2$$
(1.10) :

$$\frac{\partial^{2}U_{n}^{I(2)}}{\partial \zeta^{2}} + a_{66} (\omega_{*0n}^{I})^{2} U_{n}^{I(2)} + a_{66} (\omega_{*1n}^{I})^{2} U_{n}^{I(1)} + a_{66} (\omega_{*2n}^{I})^{2} U_{n}^{I(0)} = f_{un}^{I(2)}$$

$$f_{un}^{I(2)} = -\left(a_{66} \frac{\partial \sigma_{11n}^{I(1)}}{\partial \xi} + \frac{\partial^{2} V_{n}^{I(1)}}{\partial \xi \partial \zeta}\right)$$
(2.7)

$$\sigma_{11n}^{I(1)}, V_{n}^{I(1)}$$
(1.11)

(1.9)
$$\omega_{*n} = \omega_{*n}^{I} \cdot f_{vn}^{I(1)} = \left(\frac{\Delta_{1}}{a_{66}} - \beta_{12}\right) \frac{\pi n}{\beta_{11}} \left(C_{2n}^{(0)}(\xi)\right)' \times$$

 $\times \sin \pi n \zeta$.

(1.11),
$$\sigma_{12}^{(2)}(\xi,\pm 1) = 0$$
,

$$V_n^{I(1)} = A_n(\xi) \sin \pi n \zeta$$

$$A_n(\xi) = \left[\frac{\Delta_1}{\beta_{11}} (\omega_{*0n}^I)^2 - \pi^2 n^2\right]^{-1} \left(\frac{\Delta_1}{\beta_{11}} - \beta_{12}\right) \frac{\pi n}{\beta_{11}} \left(C_{2n}^{(0)}(\xi)\right)'$$
(2.8)

$$f_{un}^{I(2)} = \left(\frac{a_{66}\beta_{12}}{\Delta_1} + 1\right) \frac{\partial^2 V_n^{I(1)}}{\partial \xi \partial \zeta} - \frac{a_{66}\beta_{22}}{\Delta_1} \frac{\partial^2 U_n^{I(0)}}{\partial \xi^2}$$
(2.9)
(2.7), $f_{un}^{I(2)}$

$$U_{n}^{I(2)} = c_{nk} U_{k}^{I(0)}, \quad f_{un}^{I(2)} = d_{nk} U_{k}^{I(0)}, \quad k = \overline{0, \infty}$$

$$d_{k} = \frac{1}{1 + 1} \int_{0}^{1} f^{I(2)} U_{k}^{I(0)} d\zeta, \quad (2.10) \quad (2.7), \quad (2.7),$$

$$d_{nk} = \frac{1}{\prod_{i=1}^{1} (U_k^{I(0)})^2 d\zeta^{-1}} \int_{u_n}^{I(2)} U_k^{I(0)} d\zeta. \qquad (2.10) \quad (2.7),$$

$$U_m^{I(0)} \qquad (-1;1],$$

$$\left((\omega_{*0n}^I)^2 - (\omega_{*0k}^I)^2 \right) c_{nk} a_{66} C_{2k}^{(0)} C_{2m}^{(0)} \delta_{mk} + (\omega_{*2n}^I)^2 a_{66} C_{2n}^{(0)} C_{2m}^{(0)} \delta_{nm} =$$

$$= d_{nk} C_{2k}^{(0)} C_{2m}^{(0)} \delta_{km} \qquad (2.11)$$

$$m = k \neq n, \ c_{nm} = \frac{d_{nm}}{a_{66} \left((\omega_{*0n}^{l})^{2} - (\omega_{*0m}^{l})^{2} \right)}$$
$$m = n = k \quad \omega^{l} = \frac{d_{nn}}{a_{nn}}$$
(2.12)

$$m = n = k$$
, $\omega_{*2n}^{I} = \frac{d_{nn}}{a_{66}}$. (2.12)

$$c_{nn} \qquad \qquad s = 2 \,.$$

,
$$c_{nn} = 0 \,. \qquad , \quad U_n^{I(2)} \neq 0 \,, \, \omega_{*2n}^I \neq 0$$

$$U_{n}^{I} = U_{n}^{I(0)} + \varepsilon^{2} U_{n}^{I(2)}, \qquad \omega_{*n}^{I} = \omega_{*0n}^{I} + \varepsilon^{2} \omega_{*2n}^{I}.$$
(2.13)

$$\omega_{*}, \ldots \omega_{*0n}^{I}, \omega_{*0n}^{II}, \omega_{*0n}^{III}, \omega_{*0n}^{IV}, \ldots V_{n}^{I(1)} \neq 0,$$

The authors express their gratitude to INTAS, grant 06-100017-8886 which made this investigation possible.

, , .

1. . ., .// . . 2007. .107. 2.C.173-178. 2. . ., .// .: : 2007. C.21-27. « ». 3. . // . . 4. . . 301. 5. . // 6., .// . 2006. . 70. . 1. . 111-125. 7. . .: , 1976. 455 . . . 8. . . .: , 1981. 398 . : , : 0019 , 24

.: (+37410) 52-48-90 -mail: aghal@mechins.sci.am

; 0019 ; (+37410) 63-88-82 -mail: tatevik83@rambler.ru

24

[1-3], , [1,2] -[3] • , , 1. , XOY (OX, *OY* –), () D_0 . P_0 M_0 . , [1-3], , . q(x)

•,

$$\int_{0}^{\infty} q(x) dx = P_{0}, \qquad \int_{0}^{\infty} xq(x) dx = M_{0}$$
(1.1)

$$\frac{1}{f}\int_{0}^{\infty} \frac{1}{s-x}q(s)ds = \iint_{0}^{\infty} [(s-x)(s-x)^{2}q(s)ds, \quad 0 < x < \infty]$$

$$= E_{1}/2D_{0}(1-\epsilon_{1}^{2}) = 6E_{1}(1-\epsilon_{0}^{2})/E_{0}h_{0}^{3}(1-\epsilon_{1}^{2}) \qquad (1.2)$$

,

,

-

(1.1) (1.2)
$$q(x) -$$

, $\vartheta(x) -$, $h_0 -$, E_1, \in_1
 $y_0 -$, $y_0 -$

 E_0, v_0

•

,

•

•

(1.2), (1.1), :

$$q(x) \sim x^{-x} (X < 1)$$
 $x \to +0$
 $q(x) \sim x^{-1-\delta} (\delta > 0)$ $x \to \infty$ (1.3)
(1.2) $x = \beta e^{v}$, $s = \beta e^{u}$, $\beta = \lambda^{-1/3}$, ,

$$\operatorname{cth} \pi \alpha \cdot \overline{P}(\alpha) + \overline{P}(\alpha - 3i) / \alpha(\alpha - i)(\alpha - 2i) = 0, \quad -1 < \operatorname{Im} \alpha < -\gamma$$
(1.4)
(1.1)

$$\overline{P}(-i) = P_0, \quad \overline{P}(-2i) = \beta^{-1}M_0 = M_*$$
(1.5)

$$\alpha = \sigma + i\tau, \ P(u) = \beta q(\beta e^{u}), \ \overline{P}(\alpha) = \int_{-\infty}^{\infty} P(u) e^{i\alpha u} du$$
(1.6)

(1.3) ,
$$\delta = 3$$
, $\gamma = 1/2$, ,

$$(x \to +0,$$
 $(x \to -4)^{-4}$ $(x \to -4)^{-1/2}$ $(x \to -4)^{-1/2}$

,

$$\overline{P}(\alpha) = -\frac{2i}{3}Y(\alpha)F(\alpha)$$
(1.7)

- 44 -

$$F(\alpha) = \Gamma(i\alpha) \frac{\operatorname{ch}(\pi\alpha/2)}{\operatorname{sh}(\pi\alpha/2)} \left[P_0 \frac{\operatorname{sh}(\pi(\alpha-i)/3)}{\operatorname{sh}(\pi(\alpha-2i)/3)} - \sqrt{3}M_* \right]$$
(1.8)

$$\Gamma(z) - -, \quad Y(\alpha) - - - + \frac{1}{2} - \frac{1}{2} -$$

 $Y(\alpha)$ – $-4 < \text{Im}\,\alpha < -1/2$, (*A* –):

$$Y(-i) = 1, Y(\alpha) \rightarrow A \qquad |\alpha| \rightarrow \infty, -1 < \operatorname{Im} \alpha < -1/2$$

$$Y(\alpha) = \exp\left[\int_{-i}^{\alpha} \overline{X}(\xi) d\xi\right] = \exp\left[\int_{-\infty}^{\infty} \frac{1 - \operatorname{ch}(u/2)}{(e^{3u} - 1)e^{u} \operatorname{sh} u} \cdot \frac{e^{i\alpha u} - e^{u}}{u} du\right]$$
(1.10)

$$\overline{X}(\alpha) = \frac{i\pi}{3\operatorname{sh} 2\pi\alpha} \left[\sqrt{3} \left(\operatorname{sh} \frac{2\pi\alpha}{3} - i\sqrt{3}\operatorname{ch} \frac{2\pi\alpha}{3} \right) - \frac{\sqrt{3}}{3} \left(\operatorname{sh} \frac{4\pi\alpha}{3} - i\sqrt{3}\operatorname{ch} \frac{4\pi\alpha}{3} \right) - 3i\operatorname{ch} \pi\alpha - 2\alpha - 5i \right]$$
(1.11)
(1.7)

$$p(\mathbf{v}) = \beta q \left(\beta e^{\mathbf{v}}\right) = \frac{1}{2\pi} \int_{i_c - \infty}^{i_c + \infty} \overline{P}(\alpha) e^{-i\alpha \mathbf{v}} d\alpha, \quad -4 < c < -1/2$$
(1.12)

2.

(1.12)

-

$$\overline{P}(\alpha) \qquad \text{Im } \alpha > -1. \\
(& -i/2, i/2, 3i/2 \\
, \\
5i/2 - &), \\
(2.12) \\
\beta q(\beta x) = i \sum_{k=0}^{3} B_{-1}^{\frac{i(2k-1)}{2}} x^{\frac{2k-1}{2}} - B_{-2}^{(5i/2)} x^{5/2} \ln x + O\left(x^{\frac{7}{2}}(\ln x + 1)\right) \\
B_{-1}^{(\alpha_{k})} - & \overline{P}(\alpha) \\
\alpha_{k} = (k - 1/2)i \quad (k = \overline{0,3}), \quad B_{-2}^{(5i/2)} = \lim_{\alpha \to 5i/2} (\alpha - 5i/2)^{2} \overline{P}(\alpha). \\
B_{-1}^{(-i/2)} , \quad \overline{P}(\alpha) \qquad \alpha = -i/2 \\
(1.4), \\$$
(2.1)

$$\lim_{\alpha \to -i/2} \left[\frac{\operatorname{ch} \pi \alpha}{(\alpha + i/2) \operatorname{sh} \pi \alpha} \left(\alpha + \frac{i}{2} \right) \overline{P}(\alpha) + \frac{\overline{P}(\alpha - 3i)}{\alpha(\alpha - i)(\alpha - 2i)} \right] = 0.$$
 (2.2)

$$B_{-1}^{(-i/2)} = \lim_{\alpha \to -i/2} \left(\alpha + \frac{i}{2} \right) \overline{P}(\alpha) = 8i\overline{P}(-7i/2)/15\pi \qquad (2.3)$$

$$, \qquad \overline{P}(\alpha) \qquad \alpha = -i/2$$

$$\overline{P}(\alpha) \qquad \alpha = -7i/2 \qquad \overline{P}(-7i/2)$$

$$P) \qquad (2.3),$$

$$B_{-1}^{(-i/2)} = -i \frac{1}{\sqrt{3\pi}} \left[2P_0 - \sqrt{3}M_* \right]$$
(2.4)
(2.2)-(2.4) ,

$$B_{-1}^{(i/2)} = -\frac{2i}{3} \Big[P_0 - 2\sqrt{3}M_* \Big]; \quad B_{-1}^{(3i/2)} = i\frac{2\sqrt{6}}{9\sqrt{\pi}} \Big[P_0 - \sqrt{3}M_* \Big]$$

$$B_{-2}^{(5i/2)} = \frac{8}{15\pi\sqrt{3\pi}} \Big[2P_0 - \sqrt{3}M_* \Big]$$
(2.5)

$$Y(\alpha)$$

$$Y(-3i/2) = \sqrt{3}/2, Y(-5i/2) = \sqrt{2}/2, Y(-7i/2) = \sqrt{6}/4$$
(2.4), (2.5)

$$-3i/2, -2i, -7i/2:$$

$$Y(-3i/2) = \sqrt{3}/2, Y(-5i/2) = \sqrt{2}/2, Y(-7i/2) = \sqrt{6}/4$$
(2.6)

$$B_{-1}^{(5i/2)}.$$

$$\left[d\left(\left(5i\right)^2 - c_{-1} \right) \right] \right]$$

$$B_{-1}^{(5i/2)} = \left\lfloor \frac{d}{d\alpha} \left\lfloor \left(\alpha - \frac{5i}{2} \right) \overline{P}(\alpha) \right\rfloor \right\rfloor_{\alpha = 5i/2}$$
(1.7) (1.8)

$$B_{-1}^{(5i/2)} = -\frac{2i}{3} \left(F\left(\frac{5i}{2}\right) y_{-1}^{(5i/2)} + y_{-2}^{(5i/2)} \left. \frac{dF(\alpha)}{d\alpha} \right|_{\alpha=5i/2} \right)$$
(2.7)

$$y_{-1}^{(5i/2)} = \lim_{\alpha \to 5i/2} \frac{d}{d\alpha} \left(\left(\alpha - 5i/2 \right)^2 Y(\alpha) \right)$$

$$y_{-2}^{(5i/2)} = \lim_{\alpha \to 5i/2} \left(\alpha - 5i/2 \right)^2 Y(\alpha)$$

(2.8)

-

(2.8)

$$-1 < \operatorname{Im} \alpha < -0,5$$
(1.9), ,
$$Y(\alpha) \qquad -4 < \operatorname{Im} \alpha < -0,5$$
. (1.9)

(1.9)

$$\lim_{\alpha \to 5i/2} \frac{\operatorname{ch} \pi \alpha}{(\operatorname{ch} \pi \alpha - 1)} \left(\alpha - \frac{5i}{2} \right) Y(\alpha) = \lim_{\alpha \to 5i/2} \left(\alpha - \frac{5i}{2} \right) Y(\alpha - 3i)$$
(2.9)

. ,

$$y_{-2}^{(5i/2)} = \frac{i}{\pi} y_{-1}^{(-i/2)}, \quad y_{-1}^{(-i/2)} = \lim_{\alpha \to i/2} \left(\alpha + \frac{i}{2} \right) Y(\alpha)$$

$$, \quad (1.9)$$

$$y_{-1}^{(-i/2)} = \frac{1}{\pi i} Y(-7i/2)$$
(2.11)
(2.6) (2.10)

$$y_{-2}^{(5i/2)} = \frac{1}{\pi^2} Y\left(-7i/2\right) = \frac{\sqrt{6}}{4\pi^2}$$

$$y_{-1}^{(5i/2)}$$
(1.9) $\left(\alpha - 5i/2\right),$

(1.9)
$$(\alpha - 5i/2),$$
 (2.8),
 $\alpha \to 5i/2,$ (2.8),

$$-i\pi y_{-1}^{(5i/2)} + y_{-2}^{(5i/2)}\pi^{2} = \left[\frac{d}{d\alpha} \left(\left(\alpha - \frac{5i}{2}\right)Y(\alpha - 3i) \right) \right]_{\alpha = 5i/2}$$
(2.13)
(2.13)

$$y_{-1}^{(5i/2)} = \pi^{-2} Y'(-7i/2)$$

$$, \qquad y_{-1}^{(5i/2)} \qquad Y'(-7i/2) .$$

$$(1.10). \qquad (1.10)$$

$$Y'(-7i/2) = Y(-7i/2) \overline{X}(-7i/2)$$
(2.15)
(1.11), , , –

$$\overline{X}\left(-\frac{7i}{2}\right) = -\frac{i}{6}\left[\frac{10\sqrt{3}\pi}{9} + 2 - 3\pi\right]$$
(2.16)
(2.15) (2.14) $y_{-1}^{(5i/2)}$

$$y_{-1}^{(5i/2)} = -\frac{i\sqrt{6}}{24\pi^2} \left(\frac{10\sqrt{3}}{9}\pi^2 - 3\pi + 2 \right)$$
(2.17)

$$(2.12) \quad (2.17) \quad (2.7) \quad (1.8),$$

$$\overline{P}(\alpha) \qquad \alpha = 5i/2$$

$$B_{-1}^{(5i/2)} = i\frac{8\sqrt{6}}{45\pi^2} \left((2P_0 - \sqrt{3}M_*) \left(\frac{5\sqrt{3}}{54} - \frac{3\pi}{4} - \psi(-5/2) \right) - \pi M_* \right)$$
(2.18)

$$\psi(z) = \Gamma'(z)/\Gamma(z) - ...$$

$$(2.4), \quad (2.5) \quad (2.16) \quad (2.1),$$

$$(q(x) \qquad x \to +0)$$

$$\beta q(\beta x) = \frac{\sqrt{3}}{3\sqrt{\pi}} (2P_0 - \sqrt{3}M_*) x^{-1/2} + \frac{2}{3\sqrt{\pi}} (P_0 - 2\sqrt{3}M_*) x^{1/2} - ...$$

$$(2.19) - \frac{2\sqrt{6}}{9\sqrt{\pi}} (P_0 - \sqrt{3}M_*) x^{3/2} - ...$$

$$(2.19) - \frac{8\sqrt{3}}{45\pi\sqrt{\pi}} (2P_0 - \sqrt{3}M_*) \left(\frac{5\sqrt{3}}{54} - \frac{3\pi}{4} - \psi(-\frac{5}{2}) \right) - \pi M_* \right] x^{5/2} - ...$$

$$(3.19) - \frac{8\sqrt{3}}{45\pi\sqrt{\pi}} (2P_0 - \sqrt{3}M_*) x^{3/2} \ln x + O\left(x^{\frac{7}{2}} (\ln x + 1)\right), \qquad x \to 0$$

$$q(x) \qquad x \to \infty (...)$$

$$\beta q(\beta x) = -\frac{P_0 \Gamma(4)}{\pi x^4} - \frac{M_* \Gamma(5)}{\pi x^5} + \frac{2\Gamma(6)}{3\pi} (P_0 - \sqrt{3}M_*) \frac{1}{x^6} + ...$$

$$+ \frac{\Gamma(7)}{\pi^2} \left[P_0 \left(\frac{9 + 8\pi\sqrt{3}}{27} - \psi(7) \right) - \frac{2\pi}{3}M_* \right] \frac{1}{x^7} + ...$$

$$(2.20) + ..., \qquad x = +0$$

$$P_0 = \sqrt{3} \lambda M_0/2. \quad (2.20)$$

 $x \rightarrow \infty$

 $P_0 \qquad M_0$.

 1.
 ...,
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...
 ...

 ...
 ...

 ...

 ...

 ...
 ...
 <t

4. Koiter W.T. On the diffusion of load from a stiffener into a sheet. //Quart. J. Mech. and Math. 1955. Vol.8. 2.

. .- . ., . .

: 0019, -19, . 24 E-mail: karo-aga@mechins.sci.am

:

. .- . ., ,

,

,

,

,

,

«

?

3.

,

1. 1687

» [22],

- 51 -

•

« -2» [1]

,

,

,

,

,

•

. [2-8].

,

[9,10].

,

,

2.

,

,

,

,

,

,

:

•

,

,

,

[23].

,

,

,

,

,

:

[11] ?

[12-14]. 3.

,

•

,

,

,

,

,

,

,

,

[15-21].

,

,

[15-18].

,

[11]

[19-21].

[1,11] 375

,

»,

- 55 -

«

 Adamyan V.G., Zayimtsyan G.M., Manandyan L.T. Kinematic and geometric description of the solid motion in the gravity field.// Proceedings of International Conference "Physics and Control"- Saint Petersburg, 2003 – P. 214-216.

.//

. 2005:

6.

8, .1.- .17-28.

. .,

- Adamyan V., Sahradyan A., Zayimtsyan G., Adamyan V.V. The Research of Hyperbolic Motion of Bodies in Gravity Fields Library // 3rd INTERNATIONAL CONFERENCE "PHYSICS AND CONTROL" (PhysCon 2007), 2007, Potsdam, GERMANY: September 3-7.
- Adamyan V., Sahradyan A., Zayimtsyan G., Adamyan V.V The Research of Elliptic Motion of Bodies in Gravity. Fields Library // 3rd INTERNATIONAL CONFERENCE "PHYSICS AND CONTROL" (PhysCon 2007) 2007, Potsdam, GERMANY: September 3-7.

	• •,	.//		-
	:		, 1-7	: , 2005
	.242-246.			
10.	. ,			
	// .		200659.	466-73.
11.				
	:	:	, 2007. – 152 .	
12.	. ,	. ,		

.// : , 1-7 : , 2005.- .28-32. 13. · ., . ., .// " ".-, 2006. – . 18-19. 14. ., ٠, ٠, .// , 2007.- . 37-39. 15. N 1735 2.15.03.2006. ٠, 16. N 1805 2.15.06.2006. •• 17. N 1335 •• 2.15.03.2007. 18. Ν ٠, 1976 2. 15.06.2007. 19. _ •• N 1741 2.15.03.2006. 20. ٠, N 1937 2.15.03.2007. 21. ٠, N 1938 2.15.03.2007. 22. . .: , 1989. 23. . 2. - .: , 1969. – 572 . .

: 3103, , . . . 2 .: 0312-3-94-79 (.), 0312-3-84-94 (.) -mail: vgadamyan @mail.ru

:

. .

. . .,

,

,

•

$$V_{KP1} = \sqrt{g_1 r_1} \qquad M_1 \quad (.1).$$

$$V_1 = \sqrt{V_{KP1}^2 + V_1^2 + 2V_{KP1} V_1 \cos \phi} \qquad (1)$$

$$\cos \alpha_1 = (V_{KP1} + V_1 \cos \phi) / V_1$$

$$r_2 \qquad M_2, \qquad .$$

$$r_1 + h_1 = r_2 + h_2 \qquad (2)$$

$$h_1 \quad h_2 \qquad [4]$$

$$h_{1} = \frac{V_{1}^{2} r_{1}}{2 g_{1} r_{1} - V_{1}^{2}}, h_{2} = \frac{V_{2}^{2} r_{2}}{2 g_{2} r_{2} - V_{2}^{2}}$$
(3)
(2) (3) $g_{2} r_{2}^{2} = g_{1} r_{1}^{2}$

(3)
$$g_2 r_2^2 = g_1 r_1^2$$
 - M_2

$$V_{2} = \sqrt{V_{1}^{2} - 2g_{1}r_{1}^{2}\left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)}$$
(4)

$$\cos\alpha_2 = r_1 V_1 \cos\alpha_1 / r_2 V_2 \tag{5}$$

$$V_2 = \sqrt{V_{KP2}^2 + V_2^2 - 2V_{KP2}V_2\cos\alpha_2}$$
(6)

 $V_{\Sigma} = V_1 + V_2$

α,,

 M_1 .

:

,

,

 V_1 .

,

,

,

 V_1 M_1

,

 V_1

-

,

•

,

 V_2

, α₂

 M_1

,

,

-

 V_1 ,

 α_1

•

,

(5) (6),
$$\alpha_2 = 0^0$$
,

•

,

$$V_1^2 = 2g_1 r_1 r_2 (r_2 - r_1) / (r_2^2 - r_1^2 \cos^2 \alpha_1)$$
,
(7)
,
 M_1 ,

,

(7)
$$V_{KP1} = \sqrt{g_1 r_1}$$

$$\Delta V_1^2 = g_1 r_1 \left(1 + \frac{2r_2 (r_2 - r_1)}{r_2^2 - r_1^2 \cos^2 \alpha_1} - 2\sqrt{\frac{2r_2 (r_2 - r_1)}{r_2^2 - r_1^2 \cos^2 \alpha_1}} \cdot \cos \alpha_1 \right)$$
(8)
(7) (8) , $\alpha_1 = 0^0$, α_1 ,
(8)
$$V_1$$
.
$$V_1$$
.
$$V_1$$

 V_2 .

,

 V_2

•

.
(7) (4),
$$\alpha_1 = 0^0$$

 $V_1 = \sqrt{2g_1r_1r_2/(r_1 + r_2)}$, $V_2 = \sqrt{2g_1r_1^3/r_2(r_1 + r_2)}$
 $V_1 = V_1 - V_1$, $V_2 = V_2 - V_2$, (9), $V_1 = \sqrt{g_1r_1}$
 $V_2 = \sqrt{g_1r_1^2/r_2}$,

$$V_{1} \quad V_{2}$$

$$V_{1} = \sqrt{g_{1}r_{1}} \left(\sqrt{\frac{2r_{2}}{r_{1} - r_{2}}} - 1 \right), \quad V_{2} = \sqrt{\frac{g_{1}r_{1}^{2}}{r_{2}}} \left(1 - \sqrt{\frac{2r_{1}}{r_{1} + r_{2}}} \right)$$

$$V_{2}, \qquad .$$

$$V_{1}$$

:

..., . .: (+312) 3-93-94 (..) (+312) 3-60-03 (..) E-mail: <u>roman@gyumri.am</u>

..., .. .: 3-94-79 (..), 3-43-21 (..) E-mail: <u>zgev@mail.ru</u>

$$\ddagger (x) = f \dagger (x) \tag{1}$$
$$f - \qquad .$$

 \mathbf{v}_0

 $v(x) = c + g(x); (a_n < x < b_n; a_n = a + 2nL; b_n = b + 2nL; n \in)$ (2) v(x) -, g(x) с – , . [1]

р

$$q$$
,

$$v'(x) = -\frac{p}{f_{-1}} \Big[{}_{1} \sum_{n=-\infty}^{\infty} \left(\frac{1}{x - 2nL} + \int_{0}^{\infty} \frac{F(kh)}{\Delta(kh)} \sin k (x - 2nL) dk \right) + \frac{q}{f_{-1}} \Big[{}_{1} \Big[{}_{0} \sum_{n=-\infty}^{\infty} \left(f(x - 2nL) + \int_{0}^{\infty} \frac{G(k)}{\Delta(k)} \cos k (x - 2nL) dk \right) \\ \vdots$$
(3)

:

$$\begin{bmatrix} 1 = \frac{(1-S_1)r_{11}}{2R_1^-}; \ \begin{bmatrix} 0 = \frac{C_1^-}{(1-S_1)r_{11}}; \ r_{ij} = \sqrt{1-v_0^2/c_{ij}^2}; \ S_j = 1-v_0^2/2c_{2j}^2 \end{bmatrix}$$

$$r_{\pm} = r_{11} \pm r_{21}; R_i^{\pm} = S_i^2 \pm r_{12}r_{2i}; C_i^{\pm} = S_i \pm r_{12}r_{2i}; H_i^{\pm} = 1 \pm r_{12}r_{2i}; (i, j = 1, 2)$$

$$\Delta(k) = {}^{2}R_{2}^{-} + R_{1}^{-} \left(d_{1}^{-} \left(chr_{+}k - 1 \right) + d_{2}^{+} shr_{+}k \right) + R_{1}^{+} \left(d_{1}^{+} \left(chr_{-}k - 1 \right) + d_{2}^{-} shr_{-}k \right)$$

$$F(k) = R_{1}^{-} \left(d_{2}^{+} - d_{1}^{-} \right) exp(-r_{+}k) + \left(R_{1}^{-}d_{2}^{-} - R_{1}^{+}d_{1}^{+} \right) chr_{-}k + \left(R_{1}^{-}d_{1}^{-} - R_{1}^{+}d_{2}^{-} \right) shr_{-}k + {}^{2}R_{2}^{-} - R_{1}^{-}d_{1}^{-} - R_{1}^{+}d_{1}^{+}$$

$$G(k) = \frac{1}{C_1^-} \left(\left(R_1^- C_1^+ - R_1^+ C_1^- \right) \left(d_1^+ \left(\operatorname{ch} k \operatorname{r}_{-} - 1 \right) + d_2^- \operatorname{sh} k \operatorname{r}_{-} \right) + \sim \left(R_1^- C_2^- - \sim R_2^- C_1^- \right) \right)$$

$$d_1^{\pm} = \pm \frac{1}{2} \frac{1}{\operatorname{r}_{11} \operatorname{r}_{21} \left(1 - \operatorname{s}_1 \right)^2} \left(R_1^{\pm} H_2^- - 2 \sim C_1^{\pm} C_2^- + \sim^2 H_1^{\pm} R_2^- \right); d_2^{\pm} = \frac{1}{2} \ldots \left(\frac{\operatorname{r}_{12}}{\operatorname{r}_{11}} \pm \frac{\operatorname{r}_{22}}{\operatorname{r}_{21}} \right)$$

$$\sim = \frac{\widetilde{_{22}}}{\widetilde{_{11}}}; \ \ldots = \frac{\ldots_2}{\ldots_1}; \ c = \frac{c_{22}^2}{c_{21}^2} = \frac{\widetilde{_{22}}}{\ldots}$$

$$\begin{bmatrix} -L, L \end{bmatrix}.$$

$$[2]:$$

$$\sum_{n=-\infty}^{\infty} \frac{1}{x - 2nL} = \frac{f}{2L} \operatorname{ctg} \frac{f x}{2L}; \quad \sum_{n=-\infty}^{\infty} (x - 2nL) = (x);$$

$$\sum_{n=-\infty}^{\infty} e^{-ik 2Ln} = \frac{f}{L} \sum_{m=-\infty}^{\infty} \left(k - \frac{f m}{L} \right)$$

$$\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(k) e^{ik(x - 2nL)} dk = \int_{-\infty}^{\infty} f(k) e^{ikx} \sum_{n=-\infty}^{\infty} e^{-ik 2nL} dk = \int_{-\infty}^{\infty} f(k) e^{ikx} \sum_{n=-\infty}^{\infty} e^{-ik 2nL} dk =$$

$$= \int_{-\infty}^{\infty} f(k) e^{ikx} \frac{f}{L} \sum_{m=-\infty}^{\infty} \left(k - \frac{f m}{L} \right) dk = \frac{f}{L} \sum_{m=-\infty}^{\infty} f\left(\frac{f m}{L} \right) e^{i\frac{f m}{L}}$$

$$K_{1}(x) = \sum_{n=-\infty}^{\infty} \int_{0}^{\infty} \frac{F(kh)}{\Delta(kh)} \sin k (x - 2nL) dk = \frac{f}{L} \sum_{n=1}^{\infty} \frac{F(hf n/L)}{\Delta(hf n/L)} \sin \frac{f n}{L} x$$

$$v'(x) = -\frac{\int_{1}^{b} \int_{a}^{b} \frac{f}{2L} \operatorname{ctg} \frac{f(x-s)}{2L} \frac{\dagger(s)}{\sim_{1}} ds - \frac{\int_{1}^{b} \int_{a}^{b} K_{1}(x-s) \frac{\dagger(s)}{\sim_{1}} ds + \\ + \int_{1}^{b} \int_{a}^{\frac{1}{2}} \frac{f(x)}{\sim_{1}} + \frac{\int_{1}^{b} \int_{a}^{b} K_{2}(x-s) \frac{\dagger(s)}{\sim_{1}} ds \\ (2) \qquad x, \qquad v'(x) \\ (1), \qquad (1), \qquad (3)$$

$$f \left[{_{0}}\frac{\dagger (x)}{{_{-_{1}}}} + \frac{1}{f} \int_{a}^{b} \frac{f}{2L} \operatorname{ctg} \frac{f(s-x)}{2L} \frac{\dagger (s)}{{_{-_{1}}}} ds + \frac{1}{f} \int_{a}^{b} \left(\mathrm{K}_{1} (s-x) + f \left[{_{0}} \operatorname{K}_{2} (s-x) \right) \frac{\dagger (s)}{{_{-_{1}}}} ds = \frac{g'(x)}{{_{-_{1}}}} \right) ds$$
(5)

$$\int_{a}^{b} \dagger(s) ds = P$$
(6)
(5)
(3].

$$x = d + lt$$
; $s = d + l\ddagger$; $\left(d = \frac{b-a}{2}; l = \frac{b+a}{2};\right)$ $s, x \in (a,b)$

$$t^{*}(t) = \frac{l}{P} t^{*}(d+lt); \ g^{*}(t) = \frac{l^{-1}}{P[_{1}}g'(d+lt)$$

$$K^{*}(t) = \frac{1}{f} \left(\frac{fl}{2L} \operatorname{ctg}\frac{ftl}{2L} - \frac{1}{t} + lK_{1}(lt) + f[_{0}lK_{2}(lt)] \right)$$

(4)

 $\left\{ {_n \left(t \right), } \right\}$

$$\{_{n}(t) = \sum_{m=1}^{n} \frac{\{_{m} P_{n}^{(\Gamma,S)}(t)}{(t-\ddagger_{m}) P_{n}^{\prime(\Gamma,S)}(\ddagger_{m})}$$
(9)

$$\{ {}_{m} = \{ {}_{n} (\ddagger_{m}); \{ \ddagger_{m} \}_{m=1}^{n} - P_{n}^{(r,s)} (t) .$$

$${}^{\dagger} (t) (8) (7) ,$$

$${}^{n-|+1}$$

$$\sum_{m=1}^{n} \{ {}_{m} t_{m} \left(\frac{1}{\ddagger_{m} - t_{k}} + f K^{*} (\ddagger_{m} - t_{k}) \right) = g^{*} (t_{k})$$

$$\sum_{m=1}^{n} \{ {}_{m} t_{m} = 1$$

$$(10)$$

$$t_{m} = -\frac{1}{2^{|} \sin fr} \frac{P_{n-|}^{(-r,-s)}(t_{m})}{P_{n}^{\prime(r,s)}(t_{m})}$$
$$\{t_{k}\}_{k=1}^{n-|} - P_{n-|}^{(-r,-s)}(t).$$

,

,

 $\rho = 1, v_1 = v_2 = 0.3, v_0 = 0.4c_{21},$

,

,

$$f=0.27, l=h, L=1.5h,$$

(. 2,3).

•

,

,

. .- . ., : 0019 , . : (+37410) 52-48-90 E-mail: <u>vhakobyan@sci.am</u>

: 0019 , . : (+37410) 52-48-90 E-mail: <u>amirjanyan@gmail.com</u>

:

24

24

- 67 -

Au = g

-

,

,

,

,

(1)

,

,

A

A .

,

,

:

;

:

,

,

[1].

;

(2) (,
$$|(A) A,$$

$$|(A) = \sum_{\max} / \sum_{\min}$$

$$\sum_{\max} \sum_{\min}$$
(3)

[2],

•

-

,

)

$$\begin{array}{ccc}
 & & & & \\
 & & & & \\
 A & & & & & h \\
\end{array}$$

$$|(A) = O(h^{-2}).$$

,

,

М

(1)

$$M^{-1}Au = M^{-1}g$$
 (4)
 M). ,

(

$$M \qquad (2) \qquad (4) \qquad , \qquad M \qquad (2) \qquad (4) \qquad , \qquad M \qquad (5)$$
$$M \frac{u^{(k+1)} - u^{(k)}}{\tilde{S}_k} = -Au^{(k)} + g , \qquad k = 0, 1, 2, \dots \qquad (5)$$

(5)

$$| (M^{-1}A) = \sim_{\max} / \sim_{\min}$$
 (6)

~_{max} ~_{min}

 $M^{-1}A$. , (5) k $u^{(k)}$ (k+1) - $u^{(k+1)}$ -

•
$$r^{(k)} = -Au^{(k)} + g$$

• $Mz^{(k)} = r^{(k)}$
• $u^{(k+1)} = u^{(k)} + \tilde{S}_k z^{(k)}$
, M . M ,
, A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A ,
 A

M,

.

,

 $, \qquad M \\ - \qquad M \qquad \qquad A, \qquad : \\ \qquad \qquad A^{-} \qquad \qquad A^{-} \\ \qquad \qquad \qquad c_{1} \quad c_{2},$

,

$$c_{1}v^{T}Mv \leq v^{T}Av \leq c_{2}v^{T}Mv \qquad \forall v \qquad (7)$$

$$\mid (M^{-1}A) \leq c_{2} / c_{1}, \qquad ,$$

$$(4) \qquad ,$$

[3] . . [3], ,

[4].

,

,

(Algebric

-

(Algebric Multilevel Iteration Methods). [4]

Multigrid / Substructuring Methods).

[8,9,10],

[11].
1.

1986.

.:

- 2.
- , 1978.

٠,

 Axelsson O. and Vassilevski P. S. Algebraic multilevel preconditioning methods. I. – *Numer. Math.*, 56, 1989, 157-177.

.:

- . No.2.

- Kuznetsov Yu. A. Algebraic multigrid domain decomposition methods. Sov. J. Numer. Anal. Math. Modelling, v. 4, 5, 1989, 351-379.
- Hakopian Yu. R. and Kuznetsov Yu. A. Algebraic multigrid/substructur-ing preconditioners on triangular grids. – Sov. J. Numer. Anal. Math. Modelling, v. 6, 6, 1991, 453-483.
- Axelsson O. and Hakopian Yu. R. Algebraic multilevel preconditioners for perturbed finite element matrices. – *East* - *West J. Numer. Math.*, v. 6, 1, 1997, 1-22.
- 7. Axelsson O., Hakopian Yu.R. and Kuznetsov Yu.A. Multilevel preconditioning for perturbed finite element matrices. *IMA J. Numer. Anal.*, 17, 1997, 125-149.
- 8. Hakopian Yu. Algebraic multilevel preconditioners for third order finite element approximation.- *Algebra, Geometry & their Applications* (Seminar Proceedings), Yerevan State University, v.1, 2001, 20-39.
- 9. Hakopian Yu.R. and Hovhannisyan H.A. Algebraic multilevel preconditioners for third order finite element approximations in rectangular domains.- *Algebra, Geometry & their Applications* (Seminar Proceedings), Yerevan State University, v.2, 2002, 58-72.
- 10.

2006.35-48.

. .,

:

 Hakopian Yu.R. and Harutyunyan A.S. Two-level preconditioners for serendipity finite element matrices.- *Numer. Linear Algebra Appl.*, v.13, No.10, 2006, 847-864.

)

: , . .: (+37410)57-51-40 E-mail: yuri@arminco.com 1

GENERAL APPROACH TO DESCRIPTION OF TIME-DEPENDENT MATERIAL BEHAVIOUR Alexeeva S.I., Mosin A.V., Suvorova J.V.

It is well known that polymer materials show time-dependent (or viscous) behavior, some even at low temperature. The constitutive equation should therefore include not only stresses and strains, but also time. During the last hundred years viscous properties of materials have been extensively investigated. Models developed starting from simple differential equations consisting of a few terms to complex integral equations with infinite number of terms (see, e.g., [1], which contains a comprehensive bibliography).

The theory of elastic after-effect in solids was first formulated by Boltzmann [2] in 1876 and was then forgotten for a long time. At the beginning of our century, independent of Boltzmann, the Italian mathematician Volterra obtained the same results [3-4]. He named this theory the hereditary type theory. Wide application of this model, however, was found only about 30 years ago.

The Volterra works are devoted in general to linear integral equations. Much work has been done for the generalization of the equation for the conditions of nonlinearity, which are important for certain materials [1,4-6].

A feasible way was attempted by introducing the nonlinear Rabotnov's equation [1], which was proposed in 1948, but received practical application only during last thirty years:

$$\varphi[\varepsilon(t)] = \sigma(t) + \int_{0}^{t} K(t-\tau)\sigma(\tau)d\tau$$
(1)

This equation is distinguished from linear one by the introduction of the concept of the instantaneous deformation curve, that is the left side of the equation. Any process of deformation occurring in finite time is characterized by a curve, which lies underneath the instantaneous deformation curve. Putting t = 0, the integral part of (1) vanishes and the instantaneous curve is obtained, $\varphi[\varepsilon(t)] = \sigma(t)$. (Practically, this is ordinary nonlinear elasticity). At t > 0, the integral part contributes to the equation and the associated $\sigma \sim \varepsilon$ curve becomes lower.

In the present work, we shall apply equation (1). Selection a kernel of linear integral equation is an elaborated task. But it occurs that for a nonlinear equation (1) the simplest kernel can be used, because the exactness of calculations is ensured by proper choice of $\varphi(\varepsilon)$ [7]. We shall employ here Abel's kernel:

$$K(t-\tau) = \frac{k}{\left(t-\tau\right)^{\alpha}}, \quad 0 < \alpha < 1 \tag{2}$$

This kernel has only two parameters.

For some types of loading equation (1) with (2) can be simplified to algebraic form. It is very important for the engineering purposes. The advantage of the approach consists in the fact that long-time behavior of a material can be predicted using the set of parameters determined in short-time laboratory experiments.

Below the experiments will describe made on the polymer material POM (polyoximethylene) at various types of loading: loading with various strain rates, creep and relaxation.

1. Procedure of parameter determination

The material POM in the form of specimens made from pultruded rod was tested at three various rates of loading ε : 0.0004, 0.0038, 1.1 1/s. The experimental curves are shown in Fig.1. Easier way for determination of the parameters is to carry out the loading with constant rate of stress changing $\dot{\sigma} = const$. In such a case equation (1) can be integrated:

$$\varphi(\varepsilon) = \sigma \left(1 + \frac{k}{(1-\alpha)(2-\alpha)} t^{1-\alpha} \right)$$
(3)

But because we have experiments made with $\dot{\varepsilon} = const$, the next steps must be undertaken. At first we suggest that in the interval $0 \le \varepsilon \le 1\%$ relation between stress and strain is linear, $\dot{\sigma} = E\dot{\varepsilon}$. Taking into account this relation, we can use the law $\dot{\sigma} = const$ for the equation (1), so equation (3) will be justified, where $\phi(\varepsilon) = E\varepsilon$. Let us take v = 1% and for three strain rates take corresponding values of $\sigma: \sigma_1, \sigma_2, \sigma_3$. Using (3) the following relations can be written:

$$t_1 \left(1 + \frac{k}{(1-r)(2-r)} t_1^{1-r} \right) = \sigma_2 \left(1 + \frac{k}{(1-\alpha)(2-\alpha)} t_2^{1-\alpha} \right)$$

$$t_1 \left(1 + \frac{k}{(1-r)(2-r)} t_1^{1-r} \right) = t_3 \left(1 + \frac{k}{(1-r)(2-r)} t_3^{1-r} \right)$$

Parameters α and k can be determined from these relations: $\alpha = 0.913$, $k = 0.025s^{-(1-\alpha)}$.

The next suggestion is that the parameters r and k determined for linear parts of curves, will be the same in the nonlinear region. It can be shown that a mistake, which arises from such type suggestion, will be negligible. At last, it is necessary to build curve $\varphi(\varepsilon)$. The procedure is very ease if we use equation (3), know values of α and k and take into consideration any curve $\sigma \sim \varepsilon$. Right part of equation (3) can be calculated and $\varphi(\varepsilon)$ can be built. Here we use for calculation $\varphi(\varepsilon)$ the lower curve received with $\dot{\varepsilon} = 0.0004$ 1/s, Fig.1. (For the engineering applications this curve can be approximated by any expression, for example by some polynomial or logarithm).

It must be underlined that the procedure of parameters determination can be fulfilled not only with the help of stress-strain diagrams, but also using creep curves (with help of isochronal diagrams) and using relaxation data (with help of one stress-strain diagram received with any loading rate).

2. Description of experimental results

Below we shall consider three types of loading: loading with constant strain rate, $\dot{\epsilon} = const$, creep conditions, $\sigma = const$ and relaxation, $\epsilon = const$. For the calculations determined parameters α and k were used and $\varphi(\epsilon)$, Fig.1.

2.1. Tension with constant rates

Having known the values of k, α and $\varphi(\varepsilon)$, it is possible now to calculate diagram $\sigma \sim \varepsilon$ with any loading rate with help of equation (3). Calculations for strain rates 0.0038 and 1.1 1/s are shown in Fig.1.

<u>2.2. Creep</u>

Experiments on creep were carried out at three levels of stress $\sigma_* = 74$, 70 and 66 MPa, Fig.2 and 3. At first material was loaded with constant stress changing $\dagger = 0.8$ MPa up to σ_* :

$$\sigma = \dot{\sigma}t, \ 0 \le \sigma \le \sigma_*, \ 0 \le t \le t_*$$

$$\sigma = \sigma_*, \ \sigma_* = const, \ t_* \leq t$$

Because there are two parts of loading, equation (1) must be written for $t \ge t_*$ in the next way:

$$\varphi(\varepsilon) = \sigma_* + \int_0^{t_*} \frac{k}{(t-\tau)^{\alpha}} \dot{\sigma} \tau d\tau + \int_{t_*}^t \frac{k}{(t-\tau)^{\alpha}} \sigma_* d\tau$$
(4)

This equation can be easy integrated:

$$\varphi(\varepsilon) = \sigma_* + \frac{k\sigma_*}{(1-\alpha)(2-\alpha)} \left[t^{1-\alpha} + (1-\alpha)(t-t_*)^{1-\alpha} \left(1 - \frac{t_*}{t}\right) \right]$$
(5)

At high level of stress, 74 MPa, specimens were broken after approximately 7 min. The first part of loading was continued during 92.5 s and it is clearly seen in Fig.2. In this figure curve calculated with help of (5) is given too. For the long times when $t_* \ll t$, equations (4) and (5) can be rewritten in the next form:

$$\varphi(\varepsilon) = \sigma_* + \int_0^t \frac{k}{(t-\tau)^{\alpha}} \sigma_* d\tau, \ \varphi(\varepsilon) = \sigma_* \left(1 + \frac{k}{1-\alpha} t^{1-\alpha} \right)$$
(6)

The difference Δ of values received with help of (6) and more exact expression (5) can be noticed only at times, which are very close to t_* . For example, for case of Fig.2, $\sigma_* = 74$ MPa, $t_* = 92.5$ s, we have $\Delta = 3\%$ at t = 100 s and $\Delta = 1\%$ at

t = 360s. If creep process is considered at times which duration is some hours, it is possible to use more simple equation (6) instead of (5). The influence of the first part of loading is negligible. That is seen in Fig.3 for stress levels $\sigma_* = 70$ and 66 MPa. At this figure curves, calculated with help of (6) are given too.

2.3. Relaxation

Experiments on relaxation, $\varepsilon_* = \text{const}$, were fulfilled for three values of $\varepsilon_* : 3$, 6 and 9%, Fig.4. In the interval $0 \le \varepsilon \le \varepsilon_*$ loading rate was constant $\dot{V} = 0.0004$ 1/s. So two parts of loading processes take place:

 $\dot{\varepsilon} = const$, $0 \le \varepsilon \le \varepsilon_*$, $0 \le t \le t_*$

 $\varepsilon = const, \ \varepsilon = \varepsilon_*, \ t_* < t$

Equation (1) can be written in the next form

$$\varphi(\varepsilon) = \sigma + \frac{k\sigma}{(1-\alpha)(2-\alpha)} \left\{ t^{1-\alpha} - (t-t_*)^{1-\alpha} \left[1 + \frac{t_*}{t} (1-\alpha) \right] \right\} + \int_{t_*}^{t} \frac{k}{(t-\tau)^{\alpha}} \sigma(\tau) d\tau$$
(7)

For processes of relaxation it is interesting to predict the material behavior at long times, when $t_* \ll t$. In such a case it can be written

$$\varphi(\varepsilon) = \int_{0}^{t} \frac{k}{(t-\tau)^{\alpha}} \sigma(\tau) d\tau$$

or

$$\varphi(\varepsilon) = (1 + K^*)\sigma \tag{8}$$

Taking into account that at relaxation process v = const and $\{(v) = \text{const}, \text{equation (8) gives the solution [1]}:$

$$\sigma = \frac{\varphi(\varepsilon)}{1 + K^*} = \varphi(\varepsilon)(1 - K^* + K^{*2} - K^{*3} + ...)$$

Because $K(t-\tau) = k/(t-\tau)^{\alpha}$, we receive

$$\sigma = \varphi(\varepsilon) \left[1 - \beta \int_{0}^{t} \vartheta_{\alpha} (-\beta, t - \tau) d\tau \right]$$
(9)

where $\beta = \frac{k}{1-\alpha}$, $\boldsymbol{\vartheta}_{\alpha}(-\beta,t) = \sum_{n=0}^{\infty} \frac{(-\beta)^n t^{n(1-\alpha)-\alpha}}{\Gamma[(1-\alpha)(n+1)]}$.

Here $\Gamma(...)$ is gamma-function and $(1-\alpha)\Gamma(1-\alpha) \approx 1$, because α is close to 1. Calculations by equation (9) can be fulfilled with help of the tables \Im_{Γ} -integral functions [8]. Nevertheless formula (7) consists from two parts. The first one describes the influence of initially loading process on the final results. It occurs that this influence is sensible at times close to t_* . For example, if t = 10 min, the difference Δ between values, given by (3.1) and (3.3) consists:

 $v_* = 3\%$, $t_* = 1.25$ min, $\Delta = 0.13\%$,

 $V_* = 6\%$, $t_* = 2.5 \text{ min}$, $\Delta = 0.6\%$,

 $V_* = 9\%$, $t_* = 3.75 \text{ min}$, $\Delta = 1.5\%$.

For longer times this difference becomes negligible. This conclusion proves the possibility of application (9) instead of (7). Curves of relaxation, calculated with (9) are shown in Fig.4 in comparison with experimental data

Conclusion

The results of the work show that the same constitutive equation with the same set of parameters allows to describe various types of loading. As an example polymer material POM was chosen, which has strongly pronounced timedependent behavior and nonlinearity. As a constitutive equation the nonlinear hereditary type equation was used. This equation posses large possibilities because it was established on the base of physical nature of viscosity, the most pronounced feature of which can be seen at creep and relaxation processes. It must be underlined that at the considered types of loading integral equation leads to well known simple relationships. Necessity of such type a model often arises in an engineering practice at calculation of the structures, subjected to nonmonotonic loading. Model allows to describe a transition from one state to the other and to take into account the foregoing state influence on the final behavior of a construction. That gives the possibility to predict the work of construction at long-time period of exploitation on the base of short-time laboratory experiments. Cyclic loading and fatigue can be considered too in a rather simple way. In many cases for the conditions when work of a construction is bounded by a value of some small deformation (e.g. 1%), $\varphi(\varepsilon) = E\varepsilon$ and calculations become to be some more simplified.

The approach can be applied to any material with time-dependent properties: for polymers, composites and metals at high temperature.

Fig.1. Curves of deformation with various rates of strain \vec{V} :1- 0.0004, 2 - 0.038, 3 - 1.1 1/s; 4 - {(V). — experimental results, ------ calculated results.

3.	, 1976, 288 .		• •,
4.	. ,	-	-
5.	Leaderman H. Elastic and Creep Properties of Filamentous and Polymers. Textile Foundation, Washington, 1943.	Other	High
6.	1951. – 11, .1311-1318.	//	. –
7.	···, ··	//	. –
8.	1978. – .42, .0, .1107-1114.	-	-
	, 1969, 132 .		• •,
	·		
	<u>.</u>		
E-m	, ., .4, 101990 .: (+7499) 135-78-30 (.), +7-903-684-75-67 (.) nail: <u>alexeevasofia@mail.ru</u>		
••			-
E-m	, nail: <u>alexeevasofia@mail.ru</u>		
	· ·, , · · · ·		-
E-m	, .: +7-903-684-75-68 (.) nail: <u>juliasuvorova@mail.ru</u>		

$$\frac{\partial \theta}{\partial \tau} = \frac{\lambda_x}{c_x \rho_x} \cdot \frac{\partial^2 \theta}{\partial x^2} + \frac{\lambda_y}{c_y \rho_y} \cdot \frac{\partial^2 \theta}{\partial y^2}; \qquad \frac{\partial^2 \theta}{\partial z^2} = 0$$

.

,

,

[1, 2].

,

,

•

,

,

•

,

•

:

,

a

$$c\rho \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + Q \tag{1}$$
$$\lambda_x, \lambda_y - x \qquad x \qquad y; Q -$$

(

,

,

 $c\rho, \lambda_x, \lambda_y, Q$

$$\begin{array}{ccc} x & y ; \ Q & - & & \\ & & (& / & {}^3); \end{array}$$

:

$$\lambda_{y}, Q \qquad () \qquad ()^{3};$$

$$\lambda_{y}, Q \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$(\lambda_{x} = \lambda_{y}), \qquad \lambda_{x} \neq \lambda_{y} \qquad ()^{3};$$

$$\begin{array}{c} : \\ \lambda_{x} \frac{\partial T}{\partial x} l_{x} + \lambda_{y} \frac{\partial T}{\partial y} l_{y} + q + \alpha_{T} \left(T - T_{\infty} \right) = 0 \qquad (3) \\ \lambda_{x} \frac{\partial T}{\partial x} l_{x} + \lambda_{y} \frac{\partial T}{\partial y} l_{y} + q + \alpha_{T} \left(T - T_{\infty} \right) = 0 \qquad (3) \\ \end{array}$$

$$+ \int_{S} \left[qT + \frac{1}{2} \alpha_{T} \left(T - T_{\infty} \right)^{2} \right] \partial S$$
(7)

(Q)

-

. 1.

[1,4].

$$\begin{aligned} \frac{\partial T}{\partial t} &= a \frac{\partial^2 T}{\partial R^2} + a \frac{\partial^2 T}{\partial z^2} + \varphi(R, z) \end{aligned} \tag{8} \\ \frac{\partial T}{\partial R}\Big|_{R=0} &= 0, \frac{\partial T}{\partial R}\Big|_{R=R_0} = -h_t T\Big|_{R=R_0}, \frac{\partial T}{\partial z}\Big|_{z=0} = -h_2 T\Big|_{z=0}, \frac{\partial T}{\partial z}\Big|_{z=L} = -h_3 T\Big|_{z=L} \\ T\Big|_{T=0} &= 0, \\ \varphi(R, z) &= (8) \\ \vdots & & , \\ \varphi &= \frac{q_0}{cp} \bigg(\frac{R}{R_0}\bigg) \exp\Big(-(z/l_1)^2\Big) \end{aligned} \tag{9} \\ R &= z - , 2R_0 - , l_1 - , \\ QR_0 - , \\ QR_0 - , l_1 - , \\ QR_0 - ,$$

R

-

$$\times \left(1 + e^{-a\lambda_{km}^2 T}\right) \left(\cos\left(\eta_k \frac{z}{L}\right) + \frac{p}{\eta_k} \sin\left(\eta_k \frac{z}{L}\right)\right) J_0\left(\mu_m \frac{R}{R_0}\right)$$
(10)
$$p = h_2 L, \ \eta_k \qquad \mu_m - , \ J_0 \qquad J_1 - J_2 \qquad , \ J_{km} = J_2 \qquad , \ J_0 = J_1 - J_2 \qquad , \ J_0 = J_1 - J_2 \qquad , \ J_0 = J_0 \qquad , \ J$$

 q_0

$$^{2}_{k}/L^{2}+\mu^{2}_{m}/R^{2}_{0}$$
 [4].

$$Q = \int_{V} c \rho \varphi dV = \frac{\pi^{3/2}}{4} q_0 R_0^2 l_1$$

:

.

К. . ., , .

: 377502, , . 47, .5. .: (0312) 3-40-60 (.), (0312) 2-21-52 (.) E-mail: <u>arzal@yandex.ru</u>

$$U = A - Q$$
, $U - ()$, $A - ()$

[1-2]. 70-

,

,

, 1957 ., [5]. 1966 . [6]

•

,

1925 ., ,

,

•

,

,

,

[7-9],

, , : $\frac{d\mathbf{x}}{d\mathbf{y}} = A \mathbf{x} \, \left(\mathbf{x}_* - \mathbf{x} \right)$ (1) Α A, γ_* – Χ. $A = A(\sigma) , \ \gamma_* = \gamma_*(\sigma) .$ (1) Х $X = \frac{W}{W_*}, \qquad W$ – , W_{*} – $\textbf{X}_{0} \leq \textbf{X} \leq \textbf{X}_{*}\,, \qquad \gamma_{0}\,, \ \gamma_{*} \ -$, $X , X_0 < X_* \le 1$. $\varepsilon = 0 \quad x = x_0$ (1) $\mathbf{X} = \frac{\mathbf{X}_{*}}{1 + \left(\frac{\mathbf{X}_{*}}{\mathbf{X}_{0}} - 1\right) \cdot e^{-A \vee \mathbf{X}_{*}}}$ (2) (2) , [7-9] . 1 •

[10],

[11-15].

,

,

,

, , , , .

2024-T351 [9].

$$A = 26,852$$
, $\gamma_0 = 0,02$ $\gamma_* = 0,94$.

(2).
(2).
(3)

$$\epsilon = \epsilon_*, \ x = k \cdot x_*, \ k = ..., x_{k-1}$$

(3)
 $\epsilon = \epsilon_*, \ x = k \cdot x_*, \ k = ..., x_{k-1}$
(3)

.

,

,

"

,,

.

,

,

.

,

$$z = t f^{-a}$$
 [19] $(t - , f - , a -).$

.

$$\sigma$$

$$\frac{1}{l}\frac{dl}{dz} = B^{\dagger m} = B^{\dagger m} \left(\frac{F_0}{F}\right)^m$$

$$B, m - , F_0, F -$$

$$(4)$$

,
$$\sigma = P/F = \sigma_0 F_0/F$$
 , $\sigma_0 = P/F_0$, P –

$$v = -\varepsilon_{y} / \varepsilon_{x} = -\varepsilon_{z} / \varepsilon_{x}.$$

$$F_{0} / F = (l / l_{0})^{2v},$$

$$\frac{1}{l} \frac{dl}{dz} = B^{\dagger} {}_{0}^{m} \left(\frac{l}{l_{0}}\right)^{2n\ell}$$
(5)
(5)
(5)

-

(5),

, $v \approx v_{*}, \qquad v_{*} \approx v_{*}(\sigma_{0}) - \frac{1}{2\epsilon_{*}m} \left(1 - e^{-2\epsilon_{*}mv}\right) = B^{\dagger} \frac{m}{0} z \qquad (6)$

(6)
$$\varepsilon = \varepsilon_*$$
 $z = z$

$$V_{*} = \frac{1}{2 \mathcal{E}_{*} m} \ln \left(1 - 2 \mathcal{E}_{*} m B^{\dagger} {}_{0}^{m} z \right)^{-1}$$
(7)

$$N\sigma_{0}^{m} = \frac{f^{(1+a)}}{2\nu_{*}mB} \left[1 - \left(\frac{k}{1-k} \left(\frac{\gamma_{*}}{\gamma_{0}} - 1\right)\right)^{-\frac{2m\nu_{*}}{A\gamma_{*}}} \right]$$
(8)
(9)

$$v_{*} = 0,5, \qquad (8)$$

$$N^{\dagger}_{0}^{m} = \frac{f^{(1+a)}}{mB} \left[1 - \left(\frac{k}{1-k} \left(\frac{\chi_{*}}{\chi_{0}} - 1 \right) \right)^{-\frac{m}{A\chi_{*}}} \right] \qquad (9)$$

$$F_{0}/F \approx 1,$$

$$v_* \approx 0$$
,
 $N^{\dagger}_{0}^{m} = \frac{f^{(1+a)}}{Ax_*B} \ln \left[\frac{k}{1-k} \left(\frac{x_*}{x_0} - 1 \right) \right]$, (10)

•

$$\gamma_* = (1 + c \cdot \sigma)^{-\beta}$$

,

.

(11)

•

•

•

:

$$\gamma_{*} = e^{-\alpha \sigma}$$
(12)
 $\alpha, \beta, c - .$
 $(11) \quad (12), \qquad (10) ,$
 $N\sigma_{0}^{m} = \frac{f^{(1+a)} \cdot (1+c\sigma_{0})^{\beta}}{AB} \ln\left(\frac{k}{k-1}\left(\frac{(1+c\sigma_{0})^{\beta}}{\gamma_{0}}-1\right)\right)$ (13)

$$N^{\dagger}_{0}^{m} = \frac{f^{(1+a)}}{AB \cdot e^{-r^{\dagger}_{0}}} \ln \left(\frac{k}{k-1} \left(\frac{e^{-r^{\dagger}_{0}}}{x_{0}} - 1 \right) \right)$$
(14)

(13), (14),

,

2024-T3 [16].

[9]

,

:
$$A = 26,852$$
, $m = 4$, $B = 3 \cdot 10^{-15} [$ $]^{-4} [$ $]^{-1} [$ $],$

. 2,

,

.

.

(8)

1.							
	•	.: .	•	II. 1984	. 432 c.		
2.			•		- "	",	
	1941 2. 77	71.					
3.	Taylor G.I., Farren W.S. The heat developed during plastic extension of metals // Proc. Roy. Soc. (London), 1925. Ser. A. vol. 107. P. 422-451						
4.	Taylor G.I., Qunney H. The latent energy remaining in a metal after cold working // Proc. Roy. Soc. (London), 1934. Ser. A. vol. 143, P. 307-326.						
5						//	
5.		•••	• •		10	057 ^{//}	
	102 224			• •• -	, 1)		
~	195-254. D'11 - O W	T 1 1 /		. 1 .11	· · · ·	1 //	
6.	Dillon O.W.	The heat gener	rated during to	sional oscilla	tions of copper t	ubes //	
	Intern. J. solid	ds and structur	es. 1966. vol. 2	. P. 181-204.			
7.	7. Oliferuk W., Maj M., Raniecki B. Experimental analysis of energy storage rate						
	components of	during tensile of	deformation of	polycrystals //	/ Materials scien	ice and	
	engineering A	A. 2004. 374. P	P . 77-81.				
8.							
	,	,				-	
		//	2007	77 9 1	35-137		
0	Around N V		2007.	algulations	of the stored and	arou of	
9.	Alavas IN., K	IIII KS., Leci	\cdot			1 1 1 2	
	cold work //	Journal of Eng	gineering mater	and tech	1010gy. 1990. vo	01. 112.	
	P. 465-470.						
10.		, .	••			-	
	,	// "			"		
				95-			
			25-28	2007			
		•	25 20	2007 .,	,	•	
	•			/ I II I /			
				. 2007	05-08.		

11. . .: , 1971.240 . 12. , 1985. 328 . . .: 13. . .: , 1987.158 . 14. // . . 1986. . 230. . 42-46. 15. . . .: - .- . 2004. 252 . 16. . 1968. 352 . . .: . 17. : . . 1971.268 . 18. / . . : , . . , . . 1981.241 . 19. Alexander R. Arutyunyan, Robert A. Arutyunyan. Fatigue fracture in the high :

: 198504, - , .28 .:+7 (812) 4284245 (.) +7 (812) 5266591 (.) E-mail: <u>Robert.Arutyunyan@paloma.spbu.ru</u>

, -

$$\Phi_{m}(r, s) (m = 1, 2)$$

$$r, s,$$

$$x, y [1]$$

$$gx = shr, gy = sin s, ag = chr + cos s$$

$$r = 0, r < 0, r < 0; oy$$

$$r = 0; x = \pm a, y = 0$$

$$s - f + f,$$

$$r = \pm \infty.$$

$$s - f + f,$$

$$s > 0,$$

$$r = \pm \infty.$$

$$s = 0.$$

$$s = 0.$$

$$s = 0.$$

$$s = 0.$$

$$y = +0) s = f,$$

$$(y = -0) s = -f.$$

$$\left(\frac{\partial^{4}}{\partial r^{4}} + 2\frac{\partial^{4}}{\partial r^{2} \partial s^{2}} + \frac{\partial^{4}}{\partial s^{4}} - 2\frac{\partial^{2}}{\partial r^{2}} + \frac{\partial^{2}}{\partial s^{2}} + 1\right)(g\Phi(r,s)) = 0$$
(2)

$$a \mathsf{u}_{\mathsf{r}} = \left((\mathsf{chr} + \cos \mathsf{s}) \frac{\partial^2}{\partial \mathsf{s}^2} - \mathsf{shr} \frac{\partial}{\partial \mathsf{r}} + \sin \mathsf{s} \frac{\partial}{\partial \mathsf{s}} + \mathsf{chr} \right) (g \Phi(\mathsf{r}, \mathsf{s}))$$
$$a \mathsf{u}_{\mathsf{s}} = \left((\mathsf{chr} + \cos \mathsf{s}) \frac{\partial^2}{\partial \mathsf{r}^2} - \mathsf{shr} \frac{\partial}{\partial \mathsf{r}} + \sin \mathsf{s} \frac{\partial}{\partial \mathsf{s}} - \cos \mathsf{s} \right) (g \Phi(\mathsf{r}, \mathsf{s}))$$

$$at_{rs} = -(chr + coss) \frac{\partial^{2}}{\partial r \partial s} (g\Phi(r,s))$$
(3)
$$U = \frac{g}{2\sim} \left((1 - 2^{\circ}) \frac{\partial \Phi(r,s)}{\partial r} - \frac{\partial \Psi(r,s)}{\partial s} \right)$$
$$V = \frac{g}{2\sim} \left((1 - 2^{\circ}) \frac{\partial \Phi(r,s)}{\partial s} + \frac{\partial \Psi(r,s)}{\partial r} \right)$$
$$\Psi(r,s) - , \qquad \Phi(r,s)$$

$$g\Psi(\mathbf{r},\mathbf{s}) = (1-\hat{}) \iint \left(\frac{\partial^2}{\partial r^2} - \frac{\partial^2}{\partial s^2} - 1 \right) (g\Phi(\mathbf{r},\mathbf{s})) d\mathbf{r} d\mathbf{s}$$
(4)

$$\begin{array}{c} & & -\infty < \Gamma < \infty, S_0 \le S \le S_1, \\ & & & \sim_2, \hat{}_2 - \cdots - \infty < \Gamma < \infty, \ S_2 \le S \le S_0. \\ & & & & [2,3] \end{array}$$

$$\left. \frac{\left(g\Phi_{m}(\mathbf{r},\mathbf{s})\right)}{\partial \mathbf{s}}\right|_{\mathbf{s}=\mathbf{s}_{m}} = \left\{ {}_{m(\mathbf{r})} \right\}$$

$$\left. \frac{\partial\left(g\Phi_{m}(\mathbf{r},\mathbf{s})\right)}{\partial \mathbf{s}}\right|_{\mathbf{s}=\mathbf{s}_{m}} = \left. \mathbb{E}_{m}(\mathbf{r}), \frac{\partial\left(g\Phi_{m}(\mathbf{r},\mathbf{s})\right)}{\partial \mathbf{s}}\right|_{\mathbf{s}=\mathbf{s}_{0}} = k_{m}\left(g\Phi_{m}(\mathbf{r},\mathbf{s})\right)_{\mathbf{s}=\mathbf{s}_{0}}$$

$$\mathbf{r} < \mathbf{r}_{1} \quad \mathbf{r} > \mathbf{r}_{2}$$

$$(5)$$

$$\frac{\partial (g\Phi_{m}(\mathbf{r},\mathbf{s}))}{\partial \mathbf{s}} \bigg|_{\mathbf{s}=\mathbf{s}_{0}} = 0, \, \mathbf{r}_{1} < \mathbf{r} < \mathbf{r}_{2}, \, (g\Phi_{m}(\mathbf{r},\mathbf{s})) \bigg|_{\mathbf{s}=\mathbf{s}_{0}} = 0, \, \mathbf{r}_{1} < \mathbf{r} < \mathbf{r}_{2}$$
$$(g\Phi_{1}(\mathbf{r},\mathbf{s})) \bigg|_{\mathbf{s}=\mathbf{s}_{0}} = (g\Phi_{2}(\mathbf{r},\mathbf{s})) \bigg|_{\mathbf{s}=\mathbf{s}_{0}}, \, \mathbf{r} < \mathbf{r}_{1}, \, \mathbf{r} > \mathbf{r}_{2}$$

$$\int_{-\infty}^{\infty} X(t) e^{-itr} dt = 0 , r_1 < r < r_2$$
$$\int_{-\infty}^{\infty} (M(t)X(t) + N(t)) e^{-itr} dt = 0 , r < r_1 \quad r > r_2$$
(10)

$$M(t) = \frac{1}{b_{1}(t)} \left(\operatorname{shtx}_{1} \operatorname{chtx}_{1} + t \sin x_{1} \cos x_{1} + k_{1} t \sin^{2} x_{1} \right) - \frac{1}{b_{1}(t)} \left(\operatorname{shtx}_{2} \operatorname{chtx}_{2} + t \sin x_{2} \cos x_{2} + k_{2} t \sin^{2} x_{2} \right)$$

$$N(t) = \frac{1}{b_{1}(t)} \left(-\left\{ \frac{1}{1}(t) \left(t \cdot \operatorname{chtx}_{1} \sin x_{1} + \operatorname{shtx}_{1} \cos x_{1} \right) + \left(\frac{1}{1}(t) \operatorname{shtx}_{1} \sin x_{1} \right) + \left(\frac{1}{1}(t) \operatorname{shtx}_{2} \sin x_{2} \right) \right) + \left(\frac{1}{1}(t) \operatorname{shtx}_{2} \sin x_{2} \right) \right) + \left(\frac{1}{1}(t) \operatorname{shtx}_{2} \sin x_{2} \right) + \left($$

X(t)

$$M(t)X(t) + N(t) = -\frac{i}{2f} \int_{-\infty}^{\infty} ((M(t) + 1)X(t) + N(t)) \frac{e^{i(t-t)r_2} - e^{i(t-t)r_1}}{t-t} dt \quad (12)$$

$$U(t) = \frac{M(t)+1}{fM(t)} \int_{-\infty}^{\infty} \frac{\sin(t-t)r_0}{t-t} U(t) dt + \frac{e^{-ir_0^* t} N(t)}{M(t)}$$
(13)

$$(M(t)+1)X(t)+N(t)=e^{ir_0^*t}U(t), r_0^*=\frac{r_2+r_1}{2}, r_0=\frac{r_2-r_1}{2}$$
(14)

$$a\mathsf{u}_{\mathsf{S}}^{(m)}(\mathsf{r},\mathsf{S}_{0}) = \frac{1}{\sqrt{2f}} \int_{-\infty}^{\infty} (-t^{2}(\mathsf{chr} + \cos\mathsf{S}_{0}) + i \cdot t \cdot \mathsf{shr} + k_{m} \sin\mathsf{S}_{0} - \cos\mathsf{S}_{0}) X(t) e^{-it\mathsf{r}} dt$$

$$a\ddagger_{\mathsf{rs}}^{(m)}(\mathsf{r},\mathsf{S}_{0}) = \frac{i(\mathsf{chr} + \cos\mathsf{S}_{0})k_{m}}{\sqrt{2f}} \int_{-\infty}^{\infty} tX(t) e^{-it\mathsf{r}} dt$$
(15)

$$\Gamma_{1} = \Gamma_{2} \quad X(t) = -\frac{M(t)}{N(t)} , \qquad \Gamma_{1} = -\infty \qquad \Gamma_{2} = \infty$$

$$X(t) = 0 .$$

$$X_{1} = -X_{2} = X_{0}, \\ f_{1}(t) = f_{2}(t) = f_{0}(t), \\ E_{1}(t) = -E_{2}(t) = E_{0}(t) \qquad k_{1} = -k_{2} = k_{0}, \\ N(t) = (1+h)M_{0}(t), \\ N(t) = (1+h)M_{0}(t), \\ N(t) = (1+h)M_{0}(t) \qquad M_{0}(t) = \frac{1}{2b_{0}(t)} \left(\operatorname{sh} 2tX_{0} + t \cdot \operatorname{sh} 2X_{0} + 2k_{0}t \sin^{2}X_{0} \right) \qquad (16)$$

$$N_{0}(t) = \frac{1}{b_{0}(t)} \left(-f_{0}(t)(t \cdot \operatorname{ch} tX_{0} \sin x_{0} + \operatorname{sh} tX_{0} \cos x_{0}) + \\ E_{0}(t) \operatorname{sh} tX_{0} \sin x_{0} \right)$$

$$b_{0}(t) = \operatorname{sh}^{2} tX_{0} - t^{2} \sin^{2}X_{0}$$

$$X(t) = \frac{\sqrt{2f \cdot P}}{fa(t^{2} + 1)} \frac{t \cdot ch \frac{d}{2} + f(t^{2} + 1)sh \frac{d}{2}u(t)}{shtf + 2tk_{0}}$$

$$u(t) - \frac{f}{t}$$
(17)

2)
$$S_0 = 0, S_1 = \frac{f}{2}, S_2 = -f$$
 (. 3)

$$X(t) = \frac{\sqrt{2\pi \cdot P}}{\pi a(t^{2} + 1)} \frac{t \cdot ch \frac{t\pi}{2} + \pi(t^{2} + 1)sh \frac{t\pi}{2}\delta(t)}{sht\pi + 2tk_{1} + h \cdot t \cdot cht\pi(cht\pi - 2t^{2} - 1)}$$
(18)
3)
$$S_{0} = \frac{f}{2}, S_{1} = f, S_{2} = 0, k_{1} = -k_{2} = k_{0}$$
(-.4)

$$X(t) = \frac{2\sqrt{2f}}{fa(t^{2} + 1)} \cdot \frac{h}{h+1} \cdot \frac{\left[1 + f(t^{2} + 1)u(t)\right]ch \frac{tf}{2}}{shtf + 2tk_{0}}$$
(19)

:

•••,

•

,

1.

-

•,

,

, . - ,

• •

•

•

$$\begin{array}{ccc} Q & d & - \end{array}$$

$$Q = (1/2)(\dots \dot{U}_n \dot{U}_n + - \dot{u}_n \dot{u}_n)$$
 (1.2)

$$d = (1/2)[\}_{ijmn} U_{i,j} U_{m,n} + k_{ijmn} u_{i,j} u_{m,n} - (p - s_{ik} U_{i,k})(1 - \cos u)]$$
(1.3)
$$U_i - ($$

),
$$u_i - "$$
 " (), ... -
, ~ - , , ~ -
; $\}_{ikmn}$, k_{ikmn} . s_{ik} - , $p -$
(1-cos u) , (1.3)

$$\dots \ddot{U}_i = \dagger_{ij,j} \tag{1.4}$$

•

$$\dagger_{ij} = \}_{ijmn} U_{m,n} - s_{ij} (1 - \cos u)$$
(1.5)

$$\sim \ddot{u}_{i} = k_{ijmn} \, u_{m,nj} + l_{i} \, (p - s_{nj} \, U_{n,j}) \sin u \tag{1.6}$$

(1.6)

 $l_i = u_i / u_i$

•

-

,

-

, ,

2.

...
$$\ddot{U}_{x} = \dagger_{xx,x} + \dagger_{xy,y}, \quad ... \\ \ddot{U}_{y} = \dagger_{yy,y} + \dagger_{yx,x}$$
(2.1)

$$\tilde{u}_{i} = K_{ijmn} u_{j,mn} - l_{i} (p - s_{nj} U_{n,j}) \sin u_{R}, \quad u_{R} = u/a$$
(2.2)

(1.5),

:

.

$$\dagger_{xx} = \dagger_{xx}^{e} + \dagger_{xx}^{f}; \quad \dagger_{xx}^{e} = \rbrace_{1} U_{x,x} + \rbrace_{2} U_{y,y}; \quad \dagger_{xx}^{f} = -s_{xx} (1 - \cos u_{R})$$
(2.3)

$$\dagger_{yy} = \dagger_{yy}^{e} + \dagger_{yy}^{J}; \quad \dagger_{yy}^{e} = \rbrace_{2} U_{x,x} + \rbrace_{1} U_{y,y}; \quad \dagger_{yy}^{J} = -s_{yy} (1 - \cos u_{R})$$
(2.4)

$$\dagger_{yx} = \dagger_{yx}^{e} + \dagger_{yx}^{f}; \quad \dagger_{yx}^{e} = \bigg\{_{3} (U_{x,y} + U_{y,x}); \quad \dagger_{yx}^{f} = -s_{yx} (1 - \cos u_{R}) \quad (2.5)$$

$$, \dagger_{ik}^{e}$$

 $ec{U}$. (XZ)

3.

 $U_x \ll U_y,$

,

,
$$x=0$$

 OY , L .
:
 $\ddot{U}_x << \ddot{U}_y$; $u_x << u_y$, $\ddot{u}_x << \ddot{u}_y$; $\partial()/\partial y << \partial()/\partial x$ (3.1)
(4.1), (

$$\sim \ddot{u}_{y} \approx k_{3} u_{y,xx} - (p - \bar{\uparrow}) \sin u_{y} - (s_{1}^{2}/2)_{3} \sin 2u_{y}$$
 (3.2)

$$\sim \ddot{u}_{x} \approx k_{1} u_{x,xx} + (k_{2} + k_{3}) u_{y,yx}$$
(3.3)

$$\begin{aligned} \uparrow &= -\mathsf{V}_2 N + \mathsf{V}_3 \dagger_{yx}; \quad \mathsf{V}_2 = (s_{xx} + s_{yy})/(\mathfrak{z}_2 + \mathfrak{z}_1) \\ \mathsf{V}_3 &= s_{yx}/\mathfrak{z}_3; \\ 2N &= -(\dagger_{xx} + \dagger_{yy}) \end{aligned}$$
(3.4)

•

 l_x .

$$S_{yx}$$
 –

(3.2), (3.3)				
() N.			

•

 \dagger^{f}_{yx}

•

*s*₁ (3.2)

-

) -

,

,

,

•

·

$$P = 2p - \uparrow = 2p + v_2 N - v_3 \uparrow_{yx}$$

$$(3.5)$$

$$P$$

$$N,$$

$$t_{yx},$$

$$P = 0$$

$$K = V_2 / V_3 = (s_{xx} + s_{yy}) \}_3 / s_{yx} (\}_2 + \}_1)$$
(3.7)

•

•

4.

,

N
(3.2). ,
$$(1/2)k_3(u_{y,x})^2 \approx (p-\bar{\uparrow})(1-\cos u_y) - (s_1^2/2)_3)(1-\cos u_y)^2 + G$$
 (4.1)

(4.3),

,

$$g = k_1 u_{x,x} + (k_2 + k_3) u_{y,y}$$

$$g -$$
(4.2)

G

.

(1.3)
((1.5)) -
()
$$_{ijmn}U_{i,j}U_{m,n}$$
).
 $d = P(1 - \cos u_y) - (s_1^2/2)_3 (1 - \cos u_y)^2 + G_1$
(4.3)

$$G_1 = G + (\uparrow^{-2}) + g^2 / 2k_2 \tag{4.4}$$

(4.3) $|u|=0, 2f, 3f, \dots,$

(

,

,

.

u = nf, (n = 1, 3, 5, ...),

,

,

•

$$P = 4(s_1^2/2)_3; \quad P = 2(s_1^2/2)_3; \quad P = 0$$
(4.5)

.

$$\uparrow_{1t} = 2(p - 2s_1^2/\beta_3); \quad \uparrow_{2t} = 2(p - s_1^2/\beta_3); \quad \uparrow_{3t} = 2p$$
(4.6)

 $(s_1 > 0), ,$

$$\uparrow_{3t} > \uparrow_{2t} > \uparrow_{1t}$$

$$(4.7)$$

$$\uparrow$$

5.

$$(x=0)$$

$$u = u_v(x,t)$$
.

•

•

•

,

•

$$\begin{array}{ccc}
0X \\
u = u(q); & q = (x - Vt); & V \le 0; V \ge 0 \\
L
\end{array}$$
(5.1)

$$V$$
.

,

(2.4) (3.2),

$$q \{ (1 - V^2 / V_s^2) U_{,q} = s (1 - \cos u) + \dagger; \qquad V_s^2 = \} / \dots$$
 (5.2)

$$\tilde{l}_{o}^{2} p (1 - V^{2} / V_{k}^{2}) u_{,qq} = p_{1} \sin u + p_{2} \sin u \cos u; \qquad V_{k}^{2} = k / \sim$$
(5.3)

$$\dagger -$$
 , V_s , $V_k -$, . . , p_1, p_2, p_3 (-

- 106 -

$$1 - \cos u = \frac{2a^2 tg^2 u/2}{1 + tg^2 u/2}$$
(5.5)
(5.2)
L, (5.4),

- 107 -

(
$(l_o^2/L^2 \le 1 - \widehat{S}/p \}$ ()	$\text{Im}L=\Lambda$).	V^2 >	·0,
$V - \tilde{S} = V/\Lambda$	$\Lambda = -iL$,		(5.4)	
$q = (x - Vt)/i\Lambda;$	$(sh q = -i sin(x/\Lambda - \check{S}))$	<i>t</i>)	(5	.7)
<i>L</i>)	(_ "	,	"
$\Lambda = -iL,$ Š	$=V/\Lambda$.	, (5.7)	(5.4) (5.	, .5),
,)—,	. 3	_	(-
n n	· ·)	$l_o^2/L^2=0$	(
	V^2/V_s^2	$=1-\widehat{S}/p\}$		
\widehat{S} , \ldots		(5.7).	3	
- (),		$\widehat{S}/p\} = 2$	(
) (V –	,	$\widehat{S}/p\}=0.5$).	
$0 < l_o^2 / L^2$	$(, , l_o^2/L_{oo}^2; 0 > (V/V_s))$	$^{2}>(\widehat{S}/p\}-1)$),	_
	L –		$\operatorname{Im} V = \check{S} L$, •
$q = x/L - i\check{S}t;$ sh	$q = \operatorname{sh}(x/L)\cos(\check{S} t) - (5.4)$	$-i \operatorname{ch}(x/L) \sin(\xi)$ (5.5),	(5t)	.8)
			(<i>I</i>	_)_ _
, – ().	.3		7	
				-

1. ., . ., 1958. -488 . 2. . .

.// . 2002. .1. 3. .130-176.
3. Aero E.L. Micromechanics of a double continuum in a model of a medium with variable periodic structure // Journal of Engineering Mathematics. - 2005. - V.1.- p.1-15. DOI 10.1007/s10665-005-9012-3, Springer.

4. . ., . .

:

. .- . ., . . ., . .

: 199178, .61, : (812)321 47 64 (.),.(812)567 25 15(.) E-mail: aero@microm.ipme.ru

a : 199178, .61, : (812)321 47 64 (.), (812)533 87 30 (.) E-mail: <u>bessonov@microm.ipme.ru</u>

a : 199178, .61, : (812)321 47 64 (.), (812)592 70 22 (.) E-mail: <u>aero@microm.ipme.ru</u> у,

.- .:

-

[1,3,4,5]

,

•

,

 $\Phi(x_1, x_2, t)$ $(\vec{h} = -\text{grad}\Phi$ -). -

 $\Phi^{(e)}(x_1,x_2,t).$

~

$$[1]: \partial_{-1}/\partial t - \mathbf{x}_{0}M_{0}\left(\hat{b} - \mathbf{y}\nabla_{\perp}^{2}\right) - \mathbf{x}_{0} - \mathbf{x}_{0}\partial\Phi/\partial x_{2} = 0 \mathbf{x}_{0}M_{0}\left(\hat{b} - \mathbf{y}\nabla_{\perp}^{2}\right) - \mathbf{y}_{\perp} + \partial_{-2}/\partial t + \mathbf{x}_{0} - \mathbf{y}_{0}\partial\Phi/\partial x_{1} = 0 \dots_{0}\left(\partial_{-1}/\partial x_{1} + \partial_{-2}/\partial x_{2}\right) - \nabla_{\perp}^{2}\Phi = 0$$

$$(1)$$

$$\nabla_{\perp}^{2} \Phi^{(e)} = 0 \qquad x_{2} < 0 \tag{2}$$

$$\nabla_{\perp}^{2} = \partial^{2} / \partial x_{1}^{2} + \partial^{2} / \partial x_{2}^{2} , \ \hat{b} = b + H_{0} / M_{0} , \ M_{0} = \dots_{0} \sim_{0}$$
(3)

, $X_0 = .$, \vec{H}_0 .

$$\begin{aligned} x_2 &= 0 & : \\ \Phi - \Phi^{(e)} &= 0, \ \frac{\partial \Phi}{\partial x_2} - \dots_0 \sim_2 = \frac{\partial \Phi^{(e)}}{\partial x_2}, \ < \frac{\partial \sim_1}{\partial x_2} + \sim_1 = 0, \ < \frac{\partial \sim_2}{\partial x_2} + \sim_2 = 0 \ (4) \end{aligned}$$

b

,

. .

$$\Phi \to 0 \qquad x_2 \to +\infty \quad \Phi^{(e)} \to 0 \qquad x_2 \to -\infty \,. \tag{5}$$

 $\begin{array}{ccc} : & < = 0 & < \rightarrow +\infty \, . \\ & (1) & (2) \\ & (4) \cdot (5), \end{array}$

•

(6)

$$: \frac{1}{\left[1 - \left< \left| \Gamma \right| \left(s_{1} + s_{2} \right) \right] \left\{ 4 \tilde{\Omega} \left(\dagger \Omega + \Omega_{DE} \right) \cdot \left(s_{1} s_{2} - 1 \right) - \left(s_{2} - s_{1} \right) \cdot W \right\} + \left< 2 \Gamma^{2} \left\{ 4 \left(\dagger \Omega + \Omega_{DE} \right) s_{1} s_{2} R - \left(s_{1} + s_{2} - 1 \right) \left(s_{2} - s_{1} \right) \right\} = 0 \right\}$$

$$(6)$$

$$R = \tilde{\Omega} \Big(\mathsf{S}_1 \, \mathsf{S}_2 \, -1 \Big) - \dagger \Omega \Big(\mathsf{S}_2 \, -\, \mathsf{S}_1 \Big), \ W = 4\Omega^2 + 4\dagger \Omega \Omega_{DE} + 1 \tag{7}$$

$$\dagger = |k|/k = \pm 1, \ \Omega = \check{S}/x_0 M_0, \ \tilde{\Omega} = \sqrt{1/4 + \Omega^2}, \ r = \sqrt{k}$$
(8)

$$S_{1} = \sqrt{\frac{\Gamma^{2} + \Omega_{DE} - \tilde{\Omega}}{\Gamma^{2}}}, S_{2} = \sqrt{\frac{\Gamma^{2} + \Omega_{DE} + \tilde{\Omega}}{\Gamma^{2}}}, \Omega_{DE} = \hat{b} + 1/2$$
(9)
$$\Omega_{DE} - , \qquad (9)$$

,
$$\begin{array}{c} (1,5].\\ (1,5$$

 x_1

- 111 -

, 2003.

24

24

24

5. R.W. Damon, J.R. Eshbach (1961). Magnetostatic modes of a ferromagnetic slab.– J. Phys. Chem. Solids, 19, pp. 308-320, 1961.

: , 0019, E-mail: <u>mechins@sci.am</u>

. .

4.

.- . ., : ,0019, , . 24 E-mail: <u>mechins@sci.am</u>

, .

. //

:

,

· ·- · · ·, : . , 1, E-mail: mechins@sci.am

(D.J. Hasanyan)

Address: , 0019, , . E-mail: davo1991_1991@yahoo.com

: , 0019, , . E-mail:<u>sahaklevon@yahoo.com</u>

() •••, •, •, , : e [1], (). **§1.** Oxyz y > 0. (y < 0) 0z y = 0. , \vec{H}_{0} , $ec{H}_{_0}(
ho_0$ – $\vec{M}_0 = \rho_0 \vec{\mu}_0$, $\vec{\mu}_0$ –), , 0z. . . , , $\vec{\mu}\big\{\mu(x, y, t), \nu(x, y, t), 0\big\}$ $\varphi(x, y, t), \qquad \vec{h} = -\text{grad}\{$. $\{_{e}(x, y, t), \qquad \vec{h}_{e} = -\operatorname{grad}\{_{e} -$

1. (y > 0):

- 115 -

$$\begin{cases} \frac{\partial \mu}{\partial t} = \Omega_M \left(\rho_0^{-1} \frac{\partial \varphi}{\partial y} + \hat{b} \nu - \lambda \Delta \nu \right) \\ \frac{\partial \nu}{\partial t} = \Omega_M \left(-\rho_0^{-1} \frac{\partial \varphi}{\partial x} - \hat{b} \mu + \lambda \Delta \mu \right), \ \Delta \varphi = \rho_0 \left(\frac{\partial \mu}{\partial x} + \frac{\partial \nu}{\partial y} \right) \end{cases}$$
(1.1)
($y = 0$):

$$\varphi = \varphi_e; \ \frac{\partial \varphi}{\partial y} - \rho_0 v = \frac{\partial \varphi_e}{\partial y}; \ \frac{\partial v}{\partial y} = 0; \ \frac{\partial \mu}{\partial y} = 0$$
(1.2)
(y < 0):

$$\Delta \varphi_e = 0$$

$$\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial y^2, \ \Omega_M = \gamma_0 M_0 = \gamma_0 \rho_0 \mu_0, \quad \hat{b} \quad -$$

$$, \ \lambda \quad -$$

$$(\gamma_0 = 1.76 \cdot 10^7 \ (\ \cdot \)^{-1}). \qquad (1.3)$$

§ 2.

2.

3.

$$, \dots \lambda \neq 0.$$

$$(1.1) \qquad ($$

$$) \qquad (1.1) \qquad ($$

$$(\mu, \nu, \phi) = ((M, N, \Phi)e^{iqy}e^{i(px-\omega t)}) \qquad (2.1)$$

$$M, N, \Phi - \qquad , p = q -$$

$$(2.1) \qquad (1.1),$$

ω,

 $q \qquad p \qquad \omega: \\ k^{2}[\Omega^{2} - (\hat{b} + \lambda k^{2})(1 + \hat{b} + \lambda k^{2})] = 0; \Omega = \omega / \Omega_{M}; k^{2} = p^{2} + q^{2} (2.2) \\ (2.4) \qquad : \\ k^{2} = \lambda^{-1} \Big[(-\Omega_{DE} + \sqrt{1/4 + \Omega^{2}}); - (\Omega_{DE} + \sqrt{1/4 + \Omega^{2}}) < 0; 0 \Big] \qquad (2.3) \\ \Omega_{DE} = 1/2 + \hat{b} - - \qquad [3], \qquad -$

•

, () (2.3)₁ $k^2 > 0$. (2.5) : $\Omega > \Omega_{SV} \equiv \sqrt{\hat{b}(1+\hat{b})}$, Ω_{SV} – $k^2 > 0$

$$\vec{H}_0,$$
 [2].

$$k^{2} = k_{0}^{2} = \lambda^{-1} \left(-\Omega_{DE} + \sqrt{1/4 + \Omega^{2}} \right) > 0$$

$$k_{0}^{2} = q_{0}^{2} + p^{2} \qquad (2.4)$$

$$(2.4)$$

$$\begin{cases} q = q = -q_0; \ q = q = q_0, \\ q_0 = \sqrt{\lambda^{-1} \left(-\Omega_{DE} + \sqrt{1/4 + \Omega^2} \right) - p^2} > 0 \\ \theta, \dots \end{cases}$$

$$= \{ p, q, 0 \} \qquad \text{OX} ,$$

$$(2.5)$$

 $\vec{k} = \left\{ p, q, 0 \right\}$

,

:

$$p = k_0 \cos \theta, \ q_{1,2} = \mp q_0, \ q_0 = k_0 \sin \theta$$
 (2.6)
(2.3)

$$\begin{cases} q = \pm i |p|, q = \pm i r_0, \\ r_0 = \sqrt{\lambda^{-1} \left(\Omega_{DE} + \sqrt{1/4 + \Omega^2}\right) + p^2} > 0 \end{cases}$$
(2.7)

1.

(y > 0):

,

:

$$\mu = \mu_0 + \mu_1 + \mu_2 + \mu_3, \nu = \nu_0 + \nu_1 + \nu_2 + \nu_3$$

$$\phi = \phi_0 + \phi_1 + \phi_2 + \phi_3$$
(2.10)

2. (2.9) (
$$y < 0$$
).

) :

$$(\mu_0, \nu_0, \phi_0) = ((M_0, N_0, \Phi_0) e^{-iq_0 y} e^{i(px - \omega t)})$$
) :
(2.11)

$$(\mu_1, \nu_1, \phi_1) = ((M_1, N_1, \Phi_1) e^{iq_0 y} e^{i(px - \omega t)})$$
(2.12)

$$(\mu_2, \nu_2, \phi_2) = ((M_2, N_2, \Phi_2) e^{-r_0 y} e^{i(px - \omega t)})$$

$$(2.13)$$

$$(\mu_3, \nu_3, \phi_3) = ((M_3, N_3, \phi_3)e^{-|p|y}e^{i(px-\omega t)})$$
(2.14)
(2.2)

$$M = \frac{\cdots_{0}^{-1} [-q\Omega + ip(\hat{b} + k^{2})] \Phi}{\Omega^{2} - (\hat{b} + k^{2})^{2}}, N = \frac{\cdots_{0}^{-1} [p\Omega + iq(\hat{b} + k^{2})] \Phi}{\Omega^{2} - (\hat{b} + k^{2})^{2}}$$
(2.15)

•

§3.

,

)

$$\begin{array}{ll} \Phi_1, \Phi_2, \Phi_3, \Phi & (2.9) & (2.10) \\ (1.2). & , \\ \vdots & & \end{array}$$

$$(\Phi_1, \Phi_2, \Phi_3, \Phi_e) = \left(\frac{A_1 - iB_1}{A_1 + iB_1}, \frac{A_2}{A_1 + iB_1}, \frac{A_3}{A_1 + iB_1}, \frac{A_e}{A_1 + iB_1}\right)\Phi_0$$
(3.1)

$$\begin{split} A_{1} &= p^{2}q_{0}[pq_{0}(\sigma+R)^{2} + r_{0}(R^{2}-1)(2+\sigma Q)] \\ B_{1} &= q_{0}^{2}r_{0}^{2}(R^{2}-1)(2+\sigma Q) + \sigma p^{2}Q(q_{0}^{2}+r_{0}^{2})(\sigma+R)^{2} - p^{3}r_{0}Q(\sigma+R)^{2} \\ A_{2} &= -2pq_{0}R[q_{0}^{2}(R^{2}-1)(2+\sigma Q) + \sigma p^{2}Q(\sigma+R)^{2}] \\ A_{3} &= -2pq_{0}(R^{2}-1)(\sigma+R)(\sigma pr_{0}-q_{0}^{2}) \quad (3.2) \\ A_{e} &= 2A_{1} + A_{2} + A_{3} = \\ &= pq_{0}\{-2(R^{2}-1)(\sigma+R)(\sigma pr_{0}-q_{0}^{2}) - 2R[\sigma p^{2}Q(\sigma+R)^{2} + \\ + q_{0}^{2}(R^{2}-1)(2+\sigma Q)] + p[pQ(\sigma+R)^{2} + r_{0}(R^{2}-1)(2+\sigma Q)]\} \end{split}$$

_

:

$$R \quad (M) = M_{1} / M_{0} =$$

$$= \frac{(-Rq_{0} + ip)\Phi_{1}}{(Rq_{0} + ip)\Phi_{0}} = -\frac{Rq_{0} - ip}{Rq_{0} + ip} \cdot \frac{\Phi_{1}}{\Phi_{0}} = -\frac{Rq_{0} - ip}{Rq_{0} + ip} \cdot \frac{A_{1} - iB_{1}}{A_{1} + iB_{1}}$$
(3.3)
$$R \quad (N) = N_{1} / N_{0} =$$

$$= \frac{N_{1}}{N_{0}} = \frac{(Rp + iq_{0})\Phi_{1}}{(Rp - iq_{0})\Phi_{0}} = \frac{Rp + iq_{0}}{Rp - iq_{0}} \cdot \frac{\Phi_{1}}{\Phi_{0}} = \frac{Rp + iq_{0}}{Rp - iq_{0}} \cdot \frac{A_{1} - iB_{1}}{A_{1} + iB_{1}}$$
(3.4)
$$R \quad (\Phi) = \Phi_{1} / \Phi_{0} = \frac{A_{1} - iB_{1}}{A_{1} + iB_{1}}$$
(3.5)

,

•

.

,

($\theta = \pi/2$). $(\lambda = 0)$ -• ,) ()) () -, , () • , , $\theta=\pi/\,2$, $\theta = 0, \theta = \pi$. ,

560 . 3. Damon R. W., Eshbach I. R. Magnetostatic modes of a ferromagnetic slab. J. Phys. Chem. Solids, 1961, 19, p. 308-220.

•

24

____:

.

: , 0019 , . E-mail: mechins@sci.am

,

· ..- · ., · ; , 0019 24 . E-mail: mechins@sci.am

24 , . E-mail: mechins@sci.am

. .- . ., . . ,0019 24 : , . E-mail: mechins@sci.am

(),

,

•, ,

ω

 $-\sigma$,

,

,

,

,

,

[1],

, _

,

,

,

.

$$(\check{S} \sim \uparrow).$$
 -

,

$$\operatorname{rot} \overline{H} = \frac{4f}{C} \overline{j} + \frac{1}{C} \frac{d\overline{D}}{dt}$$
(1)

:

,

$$\operatorname{rot} \overline{E} = -\frac{1}{C} \frac{\partial B}{\partial t}$$
(2)

$$\overline{j} = \dagger \overline{E}', \quad \overline{E}' = \overline{E} + \frac{V \times B}{C}$$
(3)

$$\dots \frac{d\mathbf{V}}{dt} = -\nabla P + \frac{j \times B}{C} \tag{4}$$

$$\overline{D} = \vee \overline{E}', \qquad \overline{B} = \sim \overline{H}$$

$$\overline{E}, \overline{D} - , \qquad \overline{j} -$$
(5)
(5)
(5)

$$\overline{V}$$
 - , P - , V ~ - , C - , C -

 $\frac{d}{dt} = \frac{\partial}{\partial t} + \left(\overline{\nabla} \nabla \right) \tag{6}$ $\frac{\partial \overline{D}}{\partial t}, \qquad \frac{d \overline{D}}{dt},$

,

(6)

,

$$\overline{D} = \vee \overline{E}'$$
.

,

(1)–(5).

(1)–(5),

$$\overline{E}$$

$$\frac{d\overline{B}}{dt} = \left(\overline{B}\nabla\right)\overline{\nabla} - \overline{B}\operatorname{div}\overline{\nabla} + \frac{C^2}{4f^{\dagger}}\Delta\overline{H}$$
(7)
(4).

(1)-(5). (7),
$$\overline{E}$$

 $\dagger \overline{E}' = \frac{C}{4f} \operatorname{rot} \overline{H} - \frac{\vee}{4f\dagger} \frac{d}{dt} \left(\frac{\vee}{4f} \operatorname{rot} \overline{H} \right)$
(8) (3), (8)

$$\frac{d\overline{B}}{dt} = \left(\overline{B}\nabla\right)\overline{\nabla} - \overline{B}\operatorname{div}\overline{\nabla} + \frac{C^2}{4f^{\dagger}}\Delta\overline{H} - \frac{C^2 \vee}{\left(4f^{\dagger}\right)^2}\operatorname{rot}\left(\frac{d}{dt}\operatorname{rot}\overline{H}\right)$$
(9)

$$\frac{\partial D}{\partial t} = \sqrt{\frac{dE'}{dt}}.$$
(1)-(5)

,

,

[1,3–5],

$$\frac{\partial^2 U}{\partial t \partial \ddagger} + \frac{L}{2} \Delta_{\perp} U = \frac{1}{C_n} \frac{\partial}{\partial \ddagger} \left(\Gamma U \frac{\partial U}{\partial \ddagger} + D \frac{\partial^2 U}{\partial \ddagger^2} + A \frac{\partial^3 U}{\partial \ddagger^3} \right)$$
(10)

$$U - , C_n -$$

$$A = \frac{a_1^2 C^2 v}{f \dagger C_n^2 (2C_n^2 - a^2 - a_1^2)}$$

$$a = \frac{a_1 - a_1 - a_1$$

•

,

,

,

$$\frac{\partial_{\cdots_{e}}}{\partial t} + \operatorname{div} \overline{j} = 0$$
(11)

$$\operatorname{div} \overline{j} = -\frac{1}{4f} \frac{\partial}{\partial t} \operatorname{div} \overline{D}$$

$$\operatorname{div} \overline{D} = 4f_{\cdots_{e}}$$
(1)

$$\operatorname{div} \overline{j} = -\frac{1}{4f} \frac{\partial}{\partial t} \operatorname{div} \frac{d\overline{D}}{dt}$$
(1)

$$\frac{\partial}{\partial t} \left(\cdots_{e} - \frac{1}{4f} \operatorname{div} \overline{D} \right) - \frac{1}{4f} \operatorname{div} \left[(\overline{V} \overline{V}) \overline{D} \right] = 0$$
(12)
(11)

$$\overline{V} = 0, \dots, (12)$$
(11)

- , - , , , : _-0019, . ____24 :.56-82-01

E-mail: <u>bagdoev@mechins.sci.am</u>

,

0

,

[1].

6

 $y \ge 0$ $\begin{cases} c_{44}\Delta w - e_{15} \left(\frac{\partial E_1^{(1)}}{\partial x} + \frac{\partial E_2^{(1)}}{\partial y} \right) = \dots \frac{\partial^2 w}{\partial t^2} \\ e_{15}\Delta w - V_{11}^{(1)} \left(\frac{\partial E_1^{(1)}}{\partial x} + \frac{\partial E_2^{(1)}}{\partial y} \right) = 0 \end{cases}$ (1.1)

$$\begin{aligned} \frac{\partial E_{2}^{(1)}}{\partial x} &- \frac{\partial E_{1}^{(1)}}{\partial y} = -\gamma_{1} \frac{\partial H_{3}^{(1)}}{\partial t} & (1.2) \\ \frac{\partial H_{3}^{(1)}}{\partial y} &= e_{15} \frac{\partial^{2} w}{\partial x \partial t} + \mathbb{V}_{11}^{(1)} \frac{\partial E_{1}^{(1)}}{\partial t}, & \frac{\partial H_{3}^{(1)}}{\partial x} = -e_{15} \frac{\partial^{2} w}{\partial y \partial t} - \mathbb{V}_{11}^{(1)} \frac{\partial E_{2}^{(1)}}{\partial t} & (1.3) \\ w_{-} & z; E_{1}^{(1)}, E_{2}^{(1)} - \\ & x \quad y & - \\ & , H_{3}^{(1)} - \\ z; c_{44} - & , \dots - & , \mathbb{V}_{11}^{(1)} - \\ & , & \gamma_{11} - \\ & , & 0 < y < h : \\ & \left\{ \frac{\partial E_{2}^{(2)}}{\partial x} - \frac{\partial E_{1}^{(2)}}{\partial x} = -\gamma_{0} \frac{\partial H_{3}^{(2)}}{\partial t} \\ \frac{\partial H_{3}^{(2)}}{\partial t} = \mathbb{V}_{11}^{(2)} \frac{\partial E_{1}^{(2)}}{\partial t}, & \frac{\partial H_{3}^{(2)}}{\partial x} = -\mathbb{V}_{11}^{(2)} \frac{\partial E_{2}^{(2)}}{\partial t} \end{aligned} \right\}$$

$$(1.1) - (1.4),$$

-

$$\begin{cases} \dagger_{23} = 0, \quad E_1^{(1)} = E_1^{(2)}, \quad D_1^{(1)} = D_1^{(2)} & \text{i} \, \tilde{0} \, \tilde{e} \quad y = 0 \\ E_1^{(2)} = 0 & \text{i} \, \tilde{0} \, \tilde{e} \quad y = -h \end{cases}$$
(1.5)

$$\lim_{y \to \infty} w = 0, \qquad \lim_{y \to \infty} H_3^{(1)} = 0 \tag{1.6}$$
$$\dagger_{13}, \dagger_{23}$$

$$D_1^{(i)}, D_2^{(i)} \ (i = 1, 2)$$

$$\dagger_{32} = c_{44} \frac{\partial w}{\partial y} - e_{15} E_2^{(1)}, \qquad \dagger_{31} = c_{44} \frac{\partial w}{\partial x} - e_{15} E_1^{(1)}$$
 (1.7)

$$D_1^{(1)} = e_{15} \frac{\partial w}{\partial x} + \mathsf{V}_{11}^{(1)} E_1^{(1)}, \qquad D_2^{(1)} = e_{15} \frac{\partial w}{\partial y} + \mathsf{V}_{11}^{(1)} E_2^{(1)}$$
(1.8)

$$D_1^{(2)} = \mathsf{V}_{11}^{(2)} E_1^{(2)}, \qquad D_2^{(2)} = \mathsf{V}_{11}^{(2)} E_2^{(2)}$$
(1.9)
(1.1) - (1.3), [1],

$$\Delta w = \frac{1}{c_t^2} \frac{\partial^2 w}{\partial t^2}, \qquad \Delta H_3^{(1)} = \frac{1}{c_1^2} \frac{\partial^2 H_3^1}{\partial t^2}$$
(1.10)

$$c_t^2 = \frac{\overline{c}_{44}}{\dots} = \frac{c_{44}}{\dots} (1+t), \qquad c_1^2 = \frac{1}{\mathsf{V}_{11}^{(1)} \mathsf{v}_1}, \qquad \mathsf{t} = \frac{e_{15}^2}{c_{44} \mathsf{V}_{11}^{(1)}}$$
(1.11)
, (1.4)

$$\Delta H_3^{(2)} = \frac{1}{c_2^2} \frac{\partial^2 H_3^{(2)}}{\partial t^2}, \qquad c_2^2 = \frac{1}{\mathsf{V}_{11}^{(2)} \sim_0} \tag{1.12}$$

$$w = f(y)\exp((\tilde{S}t - kx)), \qquad H_3^{(1)} = g(y)\exp((\tilde{S}t - kx))$$
 (2.1)

$$f(y), g(y), , ,$$
(1.6), ;
$$f(y) = A_1 e^{-k\sqrt{1-y}y}, \quad g(y) = B_1 e^{-k\sqrt{1-[y]y}}$$
(2.2)

 A_1, B_1 –

$$y = \frac{\tilde{S}^2}{k^2 c_t^2}, \qquad \begin{bmatrix} 1 = \frac{c_t^2}{c_1^2} <<1 \\ 0 = \frac{1}{2} + \frac{1}$$

η,

,

$$\begin{array}{cccc}
0 < y < 1 & (2.4) \\
(2.1) & (2.2) & (1.3)
\end{array}$$

$$\begin{cases} E_{1}^{(1)} = \frac{ik}{\mathsf{v}_{11}^{(1)}} \left(\frac{\sqrt{1 - [_{1}y]}}{\check{\mathsf{S}}} B_{1} e^{-k\sqrt{1 - [_{y}y]}} + e_{15} A_{1} e^{-k\sqrt{1 - y}y} \right) \exp i(\check{\mathsf{S}}t - kx) \\ E_{1}^{(1)} = \frac{k}{\mathsf{v}_{11}^{(1)}} \left(\frac{1}{\check{\mathsf{S}}} B_{1} e^{-k\sqrt{1 - [_{y}y]}} + e_{15}\sqrt{1 - y} A_{1} e^{-k\sqrt{1 - y}y} \right) \exp i(\check{\mathsf{S}}t - kx) \\ , \qquad (1.4) \quad (1.12), \qquad \vdots \end{cases}$$

$$\begin{cases} H_{3}^{(2)} = \left(B_{2}e^{-k\sqrt{1-\lfloor_{2}y}y} + C_{2}e^{k\sqrt{1-\lfloor_{2}y}y}\right)\exp i(\breve{S}t - kx) \\ E_{1}^{(2)} = \frac{ik\sqrt{1-\lfloor_{2}y}}{\breve{S}\mathsf{V}_{11}^{(1)}} \left(B_{2}e^{-k\sqrt{1-\lfloor_{2}y}y} - C_{2}e^{k\sqrt{1-\lfloor_{2}y}y}\right)\exp i(\breve{S}t - kx) \\ E_{3}^{(2)} = \frac{k}{\breve{S}\mathsf{V}_{11}^{(2)}} \left(B_{2}e^{-k\sqrt{1-\lfloor_{2}y}y} + C_{2}e^{k\sqrt{1-\lfloor_{2}y}y}\right)\exp i(\breve{S}t - kx) \end{cases}$$
(2.6)

$$\begin{bmatrix} c_{1} = \frac{c_{t}^{2}}{C_{2}^{2}}, & C_{2}^{2} = (\sim_{0} V_{11}^{(2)})^{-1}$$
(2.7)
(2.1), (2.2), (2.5), (2.6) (1.5)

 $A_{1}, B_{1}, B_{2}, C_{2} :$ $\begin{cases}
c_{44}(1+t)\sqrt{1-y}A_{1} + \frac{e_{15}}{\breve{S}V_{11}}B_{1} = 0 \\
e_{15}A_{1} + \frac{\sqrt{1-y}B_{1}}{\breve{S}}B_{1} - \frac{\sqrt{1-y}V_{11}}{\breve{S}}V_{11}^{(1)}(B_{2} - C_{2}) = 0 \\
B_{1} - B_{2} - C_{2} = 0 \\
B_{2}e^{k\sqrt{1-y}} - C_{2}e^{-k\sqrt{1-y}} = 0 \\
\end{cases}$ (3.1)
(3.1)

$$\Gamma(\mathbf{y}, kh) = \mathbf{t} - (1 + \mathbf{t})\sqrt{1 - \mathbf{y}} \left[\sqrt{1 - [\mathbf{y}]} + \mathbf{v}_{11}^{(1)} \left(\mathbf{v}_{11}^{(2)} \right)^{-1} \sqrt{1 - [\mathbf{y}]} \mathbf{th} (kh\sqrt{1 - [\mathbf{y}]}) \right] = 0 \ (3.2)$$

$$(3.2), \qquad kh \to 0 \qquad \qquad [1 << 1,]$$

$$\mathbf{y} = 1 - \mathbf{t}^{2} (1 + \mathbf{t})^{-2} \qquad \qquad (3.3)$$

$$(3.2), \qquad [1 << 1, [\mathbf{y} << 1,]$$

$$(3.2), \qquad \qquad (3.2),]$$

$$y = 1 - t^{2} (1 + t)^{-2} \left(1 + \frac{V_{11}^{(1)}}{V_{11}^{(2)}} th kh \right)^{-2}$$
(3.4)

$$kh \to 0 \qquad (3.2)$$

$$\sqrt{1-y}\sqrt{1-[y]} = t(1+t)^{-1} \qquad (3.5)$$

$$(3.2) \qquad (3.5) \qquad ,$$

$$(3.2) \qquad (3.5) \qquad ,$$

 A_1 ,

,

•

,

$$H_{3}^{(2)} = -e_{15}\tilde{S}(1+t^{-1})\sqrt{1-y}A_{1}\frac{ch[k(h+y)\sqrt{1-[_{2}y]}]}{ch(kh\sqrt{1-[_{2}y]})}$$
(3.6)

[4].

,

4.

,

,

,

 $D_2^{(1)} = D_2^{(2)} \qquad (1.5)$

$$H_3^{(1)} = H_3^{(2)} \qquad y = 0 \tag{4.1}$$

$$D_2 = 0 y = 0$$
 (4.2)

,

h

$$E_1^{(2)} = 0$$
 (1.5)
 $H_3^{(2)} = 0$ $y = -h$ (4.3)
, 1.

$$\Gamma(\mathbf{y}, kh) = \mathbf{t} - (1+\mathbf{t})\sqrt{1-\mathbf{y}} \left[\sqrt{1-[\mathbf{y}]} + \mathbf{v}_{11}^{(1)} \left(\mathbf{v}_{11}^{(2)} \right)^{-1} \sqrt{1-[\mathbf{y}]} \operatorname{cth}(kh\sqrt{1-[\mathbf{y}]}) \right] = 0 \quad (4.4)$$

$$kh \to 0$$

$$\sqrt{1-y}\sqrt{1-[_2y]} = 0$$
 (4.5)
(4.2). (3.2)
(4.4) , $U = 0$ (4.6)

$$kh \rightarrow 0 \quad (h=0),$$

$$- kh \rightarrow \infty \quad ().$$

$$() kh \rightarrow 0,$$

$$- kh \rightarrow \infty.$$

$$(kh \rightarrow \infty)$$

1. Yang J.S. Bleustein-Gulyaev waves in piezoelectromagnetic materials. Intern. Journ. of Applied Electromagnetics and Mechanics 2000, 12, p. 235 – 240.

. .

- 2. . ., , 1982. 239 . 3. . . .
- э.

,

:

 Shaofan Li. The electromagnetic-acoustic surface wave in a piezoelectric medium: The Bleustein-Gulyaev mode. Journ. Appl. Phys. 1996, 80(9), p. 5264 - 5269.

. .- . .,

24,0019,

.: (+37410) 52-15-03 E-mail: <u>mbelubekyan@mechins.sci.am</u> <u>mbelubekyan@yahoo.com</u>

. .«

:

,

».

٠

,

•

•••,

•

,

•

[1].

,

- 131 -

$$t \ [2].$$

$$P(t) = \exp\left[-\int_{0}^{t} \lambda(t) dt\right], \quad \lambda(t) = \frac{f(t)}{P(t)}$$

$$T_{0} = \int_{0}^{\infty} P(t), \qquad \lambda_{i}(t) = \frac{\Delta n_{i}(t)}{N_{i}(t)\Delta t}$$

$$f(t) - \qquad , \lambda_{i}(t) = \frac{\Delta n_{i}(t)}{N_{i}(t)\Delta t}$$

$$f(t) - \qquad , \lambda(t) - -$$

$$i - \qquad , T_{0} - \qquad , \lambda(t) -$$

$$t \ (\), N_{i}(t) -$$

$$i - \qquad , \Delta n_{i} - \qquad i -$$

$$\Delta t . \qquad (\)$$

$$P(t) = \prod_{i=1}^{m} P_{i}(t) = P(t) \cdot P(t) \cdot P(t) \cdot P(t) \cdot P(t) +$$

$$(t) -$$

$$P(t), P(t), P(t), P(t), P(t), P(t), P(t) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

$$(\) -$$

(

-

,

· _

,

,

,

,

$$P(t) = \exp\left[\sum_{i=0}^{N} \int_{0}^{t} \lambda_{i}(t) dt\right] = \prod_{i=1}^{N} P_{i}(t_{i}) = e^{-\lambda t}$$

.

,

$$t_{i} - i - \lambda_{i}(t) - i - \lambda_{i}(t_{i}) - \lambda_{i}($$

$$P(t) = e^{-\lambda t}$$
, $P(t) = e^{-\lambda t}$
 $\lambda - t + t$.

$$[4], , ,$$

$$P(t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-(t-t)^{2}/2\delta^{2}\right] dt$$

$$t = \sum_{i=1}^{\infty} t_{i}/N_{0}, \quad \sigma = \sqrt{\sum_{i=1}^{N} (t_{i}-t)^{2}/N_{0}-1}, \quad t_{i} - \frac{1}{\sqrt{N_{0}-1}}, \quad t_{i} - \frac{1}{\sqrt{N_{0}-1}$$

$$P(t) = \exp(\lambda \cdot t) \left[0.5 + \frac{1}{\sigma_u \sqrt{2\pi}} \int \exp\left(-\frac{T_u - \tau}{2\sigma_n^2}\right) d\tau \right]$$

$$T_u \quad \sigma_u - \frac{1}{\sigma_u \sqrt{2\pi}} \int \exp\left(-\frac{T_u - \tau}{2\sigma_n^2}\right) d\tau$$

$$T = \frac{1}{\lambda} \left[1 - e^{\lambda T_u + \frac{\lambda^2 \sigma_u^2}{2}} \right]$$

•

•

P(t) = 1.

t = 3000, t

, ,

. 1.

•

,

t = 4000050 100

, ,

- 134 -

						, ./	•		
		3000 ./ .			8000 ./ .				
					•		•		
		5.	8000	5.	8000	5.	10000	5.	10000
	4	0,9997	0,274	0,9999	0,286	0,9999	0,697	0,9999	0,698
	40	0,9993	0,265	0,9994	0,281	0,9998	0,689	0,9997	0,673
	100	0,9991	0,261	0,9988	0,279	0,9999	0,684	0,9999	0,671
•	4	0,9998	0,665	0,9999	0,669	0,9999	0,766	0,9999	0,761
	40	0,9987	0,654	0,9998	0,667	0,9999	0,764	0,9999	0,9998
	100	0,396	0,648	0,391	0,662	0,9998	0,759	0,9999	0,747

1.						.:
2.	, 1974. ,					
	200457366–69.	. // .				•
3.	• •,	· · .			- 1970	
4.	,				, 1970.	-
5.	, 1903.		:	• ,,	"	,
	2004.					

:

•

.

. . .

, .

[1] 6, 4, 6mm, 4mm [2,3] Au h_1 Pt, h_2 . e e . ($x_1 > 0$) : $\frac{\partial \dagger_{ik}}{\partial x_i} = \dots \frac{\partial^2 u_k}{\partial t^2}$ (1) $\dagger_{ik} = c_{iklm} \mathsf{X}_{lm} - e_{lik} E_{l} \quad D_i = e_{ikj} \mathsf{X}_{kl} + \mathsf{V}_{ik} E_{k}$ $\vec{E} = -\text{grad} \{, \text{ div } \vec{D} = 0, X_{ik} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_k} + \frac{\partial u_k}{\partial x_i} \right)$ (2) , †_{*ik*} – u_i – , $\vec{D}(D_k)$ – , $\vec{E}(E_k)$ – , { -, e_{lik} – V_{ik} – , x_k – *t* – , ... – 1. (1), (2), $E_l \equiv 0$. $(L_6 - L_4)$ Ox_3, Ox_1

,

 $x_1 = -(h_1 + h_2)$

•

$$u_1 \equiv 0, u_2 \equiv 0, u_3 = u(x_1, x_2, t), \quad -(h_1 + h_2) < x_1 < +\infty$$

$$\{ = \{ (x_1, x_2, t), \quad 0 < x_1 < +\infty \}$$
(3)

:

-

•

1.
$$(0 < x_1 < +\infty):$$

 $\dots \frac{\partial^2 u}{\partial t^2} = c_{44} \nabla^2 u + e_{15} \nabla^2 \{, V_{11} \nabla^2 \{ -e_{15} \nabla^2 u = 0 \}$ (4)

2.

$$(-h_{1} < x_{1} < 0)$$

$$\dots_{1} \frac{\partial^{2} u_{1}}{\partial t^{2}} = c_{44}^{(1)} \nabla^{2} u_{1}$$
(5)

3.

$$(-(h_1 + h_2) < x_1 < -h_1)$$

$$\dots_2 \frac{\partial^2 u_2}{\partial t^2} = c_{44}^{(2)} \nabla^2 u_2$$
(6)

$$\begin{array}{l} x_{1} \rightarrow +\infty, \ u \rightarrow 0, \ \{ \rightarrow 0 \\ , & \vdots \\ 1. & x_{1} = -h_{1} \\ \uparrow_{13}^{(1)} = \uparrow_{13}^{(2)}, \ u_{1} = u_{2} \\ 2. & x_{1} = 0 \end{array}$$

$$(7)$$

$$\dagger_{13} = \dagger_{13}, \ u = u_1, \ \{ = 0$$
 (8)

$$\begin{aligned} c_{44} &= c, \ c_{44}^{(1)} = c_1, \ c_{44}^{(2)} = c_2, \ e_{15} = e, \ e_{14} = d, \ v_{11} = v \\ \overline{c} &= c \left(1 + t^2\right), \ t^2 = e^2 / v \ c, \ \overline{e} = e / v, \ S = \sqrt{\overline{c} / \dots}, \ S_1 = \sqrt{c_1 / \dots_1} \end{aligned} \tag{9} \\ S_2 &= \sqrt{c_2 / \dots_2}, \ \{' = \{ -\overline{e} \ u, \ S = S_0 \sqrt{1 + t^2}, \ S_0 = \sqrt{c / \dots} \\ t^2 - , \ S_0 - , \ S_0 S_1, S_2 - , \ \{' - u \} \end{aligned}$$

1.

•

(1)-(8)

$$\nabla^2 u = \frac{1}{S^2} \frac{\partial^2 u}{\partial t^2}, \quad \nabla^2 \{\,' = 0 \tag{10}$$

 $(0 < x_1 < +\infty)$

 $(-h_1 < x_1 < 0)$ $\nabla^2 u_1 = \frac{1}{S_1^2} \frac{\partial^2 u_1}{\partial t^2}$ (11)

3.

2.

$$\nabla^{2} u_{2} = \frac{1}{S_{2}^{2}} \frac{\partial^{2} u_{2}}{\partial t^{2}}$$
(12)

4.

$$x_1 = -(h_1 + h_2)$$

$$\frac{\partial u_2}{\partial x_1} = 0$$
(13)

5.
$$x_1 = -h_1$$

$$u_1 = u_2, \quad c_1 \frac{\partial u_1}{\partial x_1} = c_2 \frac{\partial u_2}{\partial x_1}$$
(14)

6.
$$x_{1} = 0$$

$$u = u_{1}, \ \overline{e}u + \{ \ ' = 0, \ \overline{c} \ \frac{\partial u}{\partial x_{1}} + e \frac{\partial \{ \ '}{\partial x_{1}} - d \frac{\partial \{ \ '}{\partial x_{2}} - de' \frac{\partial u_{2}}{\partial x_{2}} = c_{1} \frac{\partial u_{1}}{\partial x_{1}}$$
(15)
7.
$$x_{1} \rightarrow +\infty$$

$$u \rightarrow 0, \ \{ \ ' \rightarrow 0$$
(16)

٠

2.

 $, \\ Ox_1, \qquad x_1 \to +\infty$

 Ox_2

$$(V) = \tilde{c}_{1-1}(V) \frac{\tilde{c}_{1-1}(V) \operatorname{tg}({}_{1}K_{1}) + \tilde{c}_{2-2}(V) \operatorname{tg}({}_{2}K_{2})}{\tilde{c}_{1-1}(V) - \tilde{c}_{2-2}(V) \operatorname{tg}({}_{1}K_{1}) \operatorname{tg}({}_{2}K_{2})}$$
(17)

$$S_{1}(V) = \sqrt{1 - V^{2} / S_{1}^{2}}, \quad S_{2}(V) = \sqrt{1 - V^{2} / S_{2}^{2}}, \quad K_{1} = ph_{1}, \quad K_{2} = ph_{2} \quad (18)$$

$$K_{1}, \quad K_{2} = 0 \quad . \quad .$$

•

	C ₄₄	$\rho kg/m^3$	e ₁₅	ε ₁₁	S	V_{BG}
	N/m ²		c/m^2	F/m	m/s	m/s
1 PZT-4	$2,56*10^{10}$	$7,5*10^3$	12,7	$65*10^{-10}$	2592,65	2256,85
2 Au	$4,24*10^{10}$	$19,30*10^3$	Ι	-	1482,19	—
3 Pt	$7,65*10^{10}$	$21,4*10^3$	-	-	1690,71	-

 Danoyan Z.N., Pilliposyan G. Surface electro-elastic Love waves in a layered structure with a piezoelectric substrate and a dielectric layer.– International Jornal Solids and Structures, V.12, 2007.

: , , , . , . 7/1 .10 .: (+37410)46-20-96, (+37494)19-19-86

 $\begin{aligned} & - , V_0 = 720 \ / \ , h = 0.25 \ , l_0 = 0.3 \ , \end{aligned}$ $\begin{aligned} & J = 0, \dagger_s = 3 \cdot 10^8 \text{ (/) }^2, \dots_0 = 2700 \text{ (ea/s)}^3, \sim = 7 \cdot 10^{11} \text{ (/) }^2, \\ & a_1 = -1.53 \cdot 10^{11} \text{ (/) }^2, a_2 = -1.74 \cdot 10^{11} \text{ (/) }^2, a_3 = -0.532 \cdot 10^{11} \text{ (/) }^2, \\ & a_4 = -1.912, a_5 = 0.386 \end{aligned}$

$$z = h$$
.

{

[1-4].

$$-1_{rr}$$

-†_{zz}

 $-\dagger_{zz}$, t=62

.
$$C = 0.02, R = 0.001, L = 7 \cdot 10^{-8}, J_o = 10^5 / 2$$

$$C = 0.02, R = 0.001, L = 7 \cdot 10^{-8}, J_0 = 10^5 / 2$$

. 5

$$C = 0.02, R = 0.001, L = 7 \cdot 10^{-8}, J_0 = 10^5 / 2$$

.

. 6

$$C = 0.02, R = 0.001, L = 7 \cdot 10^{-8}, J_0 = 10^5 / 2$$

 $\begin{array}{ccc} \bigcirc \sim -3 \cdot 10^2 J_0 & \textcircled{\ } \sim +3 \cdot 10^2 J_0 \\ \bigcirc \sim -2 \cdot 10 J_0 & \textcircled{\ } \sim +2 \cdot 10 J_0 \\ \bigcirc \sim -7 \cdot 10^{-1} J_0 & \textcircled{\ } \sim +7 \cdot 10^{-1} J_0 \end{array}$

$$-J_{rr}$$

 $C = 0.02, R = 0.001, L = 7 \cdot 10^{-8}, J_0 = 10^5 / ^2$

. 8

. 4,5

,

,

, [5,6].

•

	.6					
	. 7,8	. 7,8,		J _{rr}	\boldsymbol{J}_{zz} .	
	[7],		,		,	
1						
1.	•••,	• •		. //		. 2005.
2.	. 1(43)59-64. ,					//\/
		"				. // v
3.	",	, 2005 	, . 105-115 -			
		. //V		"	" , 2005, 1	16-123.
4.	Vantsyan A.A., Hovsepya half-space in the presence problems of Mechanics of	n D.Kh., l e of disch continuum	ne penetratio arge current media. Yere	on of defor t and ma evan, 2007	rmable inde gnetic field 7. p. 497-49	ntor into , Actual 9.
5.			,		, F. 13.	
6.	· ·,			•	: 200	4.224 .
7.	//	11. 				
			.: ,	1984 4	41-59.	
	<u> </u>					
	, ,					
	.: (374 93) 524501, (374 1	.0) 561523				
	.: (374 94) 552008					

$$r = \frac{a_1}{a}, | -1/ , , a, b - , a_1 - , a_$$

.

,

,

,

[1]

•

S

|h, r|

,

1

. 2.

).

r k	0.1	0.2	0.4
1/10000	0.00271982	0.00544239	0.0108862
3/10000	0.00270547	0.00543509	0.0108825
5/10000	0.00267849	0.00542069	0.0108752
1/1000	0.00258407	0.00535697	0.0108414
1/100	0.0510628	0.0245892	0.0136846
1/10	5.19519	2.59616	1.29523

. 3. [1]

3

T k	0.1	0.2	0.3	0.4	0.5
1/10000	0.00272166	0.00544331	0.00816497	0.0108866	0.0136083
5/10000	0.00272165	0.00544331	0.00816496	0.0108866	0.0136083
1/1000	0.00272165	0.00544331	0.00816496	0.0108866	0.0136083
1/100	0.00272152	0.00544304	0.00816457	0.0108861	0.0136076
1/10	0.00270785	0.00541585	0.00812401	0.0108323	0.0135408

,

•

[3]

Š′

[2]

r

 $f \in = \check{\mathsf{S}} / (k \sqrt{\frac{C_{11}}{\dots}})$, [4]

*BaTiO*₃ [3,5]

,

а

,

[3],

 $e_{15}, e_{31}, e_{33},$, \sim_5, \sim_6 [3] -

$$n = (e_{15} + e_{31})^2$$
, $k_1^2 = \frac{n}{300}$,

,

•

, .1 2

•

$$h = 0.1, R = 10^3, \frac{33}{2} = 10, \gamma_5 = 2, \gamma_6 = 3/2$$

k	0.1	0.2	0.3	0.4	0.5
n=4	0.0145	0.0102	0.0083	0.0072	0.0064
n=50	0.0299	0.02118	0.0173	0.0149	0.0134
n=100	0.0366	0.0259	0.0211	0.0183	0.0164

[3],

. 5.

				5
0.1	0.2	0.3	0.4	0.5
0.000957427	0.00216025	0.00457347	0.00804156	0.0125266

[3]

6

,

 e_{15}, e_{31}, e_{33}

. 6,7

 $-----_{33} = 0.1, \quad \sim_5 = 2, \quad \sim_6 = 3/2$

nk	0.1	0.2	0.3	0.4	0.5
0	0.00819971	0.00181705	0.00127862	0.00110499	0.00102893
0.1	0.00815647	0.00181323	0.00127684	0.00110385	0.00102811
1	0.00778193	0.00177958	0.00126111	0.00109375	0.00102082
2	0.00739502	0.00174369	0.00124417	0.00108281	0.0010129
3	0.00703645	0.00170928	0.00122777	0.00107216	0.00100516
4	0.00670386	0.00167626	0.0012119	0.0010618	0.000997599
5	0.00639507	0.00164455	0.00119651	0.0015171	0.00090204
10	0.00514322	0.00150326	0.00112624	0.00100498	0.000955548
20	0.00358862	0.00128617	0.00101218	0.00092666	0.000895961
30	0.00269912	0.00112765	0.00092348	0.00086345	0.000846381
40	0.0021397	0.00100709	0.00085243	0.00081118	0.000804326
50	0.00176197	0.00091243	0.00079414	0.00076713	0.00076809

4

	$=1, \sim_5 = 2, \sim_6 = 3/2$									
		33								
N	0.1	0.2	0.3	0.4	0.5					
$k \searrow$										
0	0.0133858	0.0286255	0.0461802	0.0665458	0.0901484					
0.1	0.0133868	0.0286303	0.046193	0.0665728	0.0901976					
1	0.0133957	0.0286731	0.0463084	0.0668164	0.090643					
2	0.0134057	0.0287208	0.0464374	0.0670894	0.0911434					
3	0.0134157	0.0287688	0.0465673	0.0673649	0.0916496					
4	0.0134257	0.028817	0.0466981	0.067643	0.0921618					
5	0.0134357	0.0288654	0.0468298	0.0679237	0.0926801					
10	0.0134861	0.0291106	0.0475022	0.069366	0.0953662					
20	0.0135885	0.0296176	0.048919	0.0724553	0.101268					
30	0.0136931	0.0301481	0.0504375	0.075834	0.108066					
40	0.0137998	0.0307034	0.0520643	0.0795193	0.116269					
50	0.0139088	0.0312848	0.0538038	0.0835286	0.0589026					

$$\in = \frac{1}{2} |h_{\sqrt{1 + \frac{3k_1^2}{1 + 4k_1^2}}}$$

,

2h –

.8 *h*=0,1 .

8

n k	0.1	0.2	0.3	0.4	0.5
n=0	0.005	0.01	0.015	0.02	0.025
n=0.1	0.00500416	0.0100083	0.0150125	0.0200166	0.0250208
n=1	0.00504095	0.0100819	0.01512229	0.0201638	0.0252048
n=2	0.00508052	0.010161	0.0152416	0.0203221	0.0254026
n=3	0.00511878	0.0102376	0.0153563	0.0204751	0.0255939
n=4	0.0051558	0.0103116	0.0154674	0.0206232	0.025779
n=5	0.00519164	0.0103833	0.0155749	0.0207666	0.0259582
n=10	0.00535504	0.0107101	0.0160651	0.0214202	0.0267752

,
$$e_{15} = e_{33} = -_5 = -_6 = 0$$
 |²₁.

ZnO,

CdS.

[6].

1.		••	• •,		. // .:		-
r				200.	/ .		2006
2.	.106. 3.	,	• •,	• •	// ·		. 2000.
3.	Bagdoev A.C 2007.N2(52).	G., Vard	lanyan A.V	., Vardanyan	S.V. //		
4.	•	••					
_	•			20	000.		
5.		., T	., 1066			./	
6	• •	.1	, 1900.				-
0.		:		•••	, 1961		
		<u>:</u>					
	• •						
	: , 0 . 568201	0019,		24			

E-mail: avardanyan@mechins.sci.am

$$\uparrow_{ij}$$

$$\uparrow_{i}$$

$$[1]:$$

$$\uparrow_{x} = \uparrow_{1}l_{1}^{2} + \uparrow_{2}m_{1}^{2} + \uparrow_{3}n_{1}^{2}, \ \downarrow_{xy} = \uparrow_{1}l_{1}l_{2} + \uparrow_{2}m_{1}m_{2} + \uparrow_{3}n_{1}n_{2}$$

$$\uparrow_{y} = \uparrow_{1}l_{2}^{2} + \uparrow_{2}m_{2}^{2} + \uparrow_{3}n_{2}^{2}, \ \downarrow_{xz} = \uparrow_{1}l_{1}l_{3} + \uparrow_{2}m_{1}m_{3} + \uparrow_{3}n_{1}n_{3}$$

$$\uparrow_{z} = \uparrow_{1}l_{3}^{2} + \uparrow_{2}m_{3}^{2} + \uparrow_{3}n_{3}^{2}, \ \downarrow_{yz} = \uparrow_{1}l_{2}l_{3} + \uparrow_{2}m_{2}m_{3} + \uparrow_{3}n_{2}n_{3}$$

$$:$$

$$(1)$$

••

.

.

$$l_{1}^{2} + m_{1}^{2} + n_{1}^{2} = 1, \quad l_{1}l_{2} + m_{1}m_{2} + n_{1}n_{2} = 0$$

$$l_{2}^{2} + m_{2}^{2} + n_{2}^{2} = 1, \quad l_{1}l_{3} + m_{1}m_{3} + n_{1}n_{3} = 0$$

$$l_{3}^{2} + m_{3}^{2} + n_{3}^{2} = 1, \quad l_{2}l_{3} + m_{2}m_{3} + n_{2}n_{3} = 0$$

$$[2]:$$

$$[2]:$$

$$\dagger_1 = \dagger_2, \ \dagger_3 = d, \ d = \text{const}$$
(3)
(3)
(2),
(1)
:

$$t_{x} = t_{1} + (d - t_{1})n_{1}^{2}, \ t_{xy} = (d - t_{1})n_{1}n_{2} t_{y} = t_{1} + (d - t_{1})n_{2}^{2}, \ t_{xz} = (d - t_{1})n_{1}n_{3} t_{z} = t_{1} + (d - t_{1})n_{3}^{2}, \ t_{yz} = (d - t_{1})n_{2}n_{3}$$

$$(4)$$

$$\varepsilon = \dagger_1 = \dagger_2, \ 3\dagger = \dagger_x + \dagger_y + \dagger_z = 2\varepsilon + d$$

$$\varepsilon = \frac{1}{2}(3\dagger - d), \ \dagger = \frac{1}{3}(2\varepsilon + d)$$

$$\varepsilon = \frac{1}{2}(3\dagger - d), \ = \frac{1}{3}(2\varepsilon + d)$$

$$\varepsilon = \frac{1}{2}(3\dagger - d), \ = \frac{1}{3}(2\varepsilon + d)$$

$$\varepsilon = \frac{1}{2}(3\dagger - d), \ = \frac{1}{3}(2\varepsilon + d)$$

$$\varepsilon = \frac{1}{2}(3\dagger - d), \ = \frac{1}{3}(2\varepsilon + d)$$

$$\varepsilon = \frac{1}{2}(3\dagger - d), \ = \frac{1}{3}(2\varepsilon + d)$$

$$\frac{\ddagger_{xy} \ddagger_{xz}}{\ddagger_{yz}} = (d - \epsilon) n_1^2, \quad \frac{\ddagger_{xy} \ddagger_{yz}}{\ddagger_{xz}} = (d - \epsilon) n_2^2, \quad \frac{\ddagger_{xz} \ddagger_{yz}}{\ddagger_{xy}} = (d - \epsilon) n_3^2$$
(7)

$$\frac{\ddagger_{xy} \ddagger_{xz}}{\ddagger_{yz}} + \frac{\ddagger_{xy} \ddagger_{yz}}{\ddagger_{xz}} + \frac{\ddagger_{xz} \ddagger_{yz}}{\ddagger_{xy}} = d - \in$$
(8)

$$(7) \quad (8), \qquad (6) \qquad : \\ \dagger_{x} = \notin + \frac{\dagger_{xy} \dagger_{xz}}{\dagger_{yz}}, \ \dagger_{y} = \notin + \frac{\dagger_{xy} \dagger_{yz}}{\dagger_{xz}}, \ \dagger_{z} = \notin + \frac{\dagger_{xz} \dagger_{yz}}{\dagger_{xy}}$$
(9)

$$\frac{\ddagger_{xy} \ddagger_{xz}}{\ddagger_{yz}} + \frac{\ddagger_{xy} \ddagger_{yz}}{\ddagger_{xz}} + \frac{\ddagger_{xz} \ddagger_{yz}}{\ddagger_{xy}} = d - \in$$
(10)

(10)

$$(\ddagger_{xz}^{2} + \ddagger_{yz}^{2}) \ddagger_{xy}^{2} - (d - \textbf{\in}) \ddagger_{xy} (\ddagger_{xz}^{2} \ddagger_{yz}) + \ddagger_{xz}^{2} \ddagger_{yz}^{2} = 0$$

$$(11)$$

$$\ddagger_{xz} = (d - €)T \cos\{, \ddagger_{yz} = (d - €)T \sin\{ (12) \\
(11) :$$

$$\ddagger_{xy}^{2} - (d - \epsilon)\cos\{\sin\{\ddagger_{xy} + (d - \epsilon)^{2}T^{2}\cos^{2}\{\sin^{2}\{=0\}\$$
(13)

$$\ddagger_{xy} = \frac{d - \epsilon}{2} \left(1 \pm \sqrt{1 - 4T^2} \right) \sin\{\cos\{ (14) \}$$

$$\ddagger_{xz} = \ddagger_{yz} = T = 0 \tag{15}$$

$$\ddagger_{xy} = \frac{d - \hat{\epsilon}}{2} (1 \pm 1) \sin \{ \cos \{ (+). \}$$

:

(12) (14) (9),

$$\uparrow_{x} = \notin + \frac{d - \notin}{2} \left(1 + \sqrt{1 - 4T^{2}} \right) \cos^{2} \{$$

$$\uparrow_{y} = \notin + \frac{d - \notin}{2} \left(1 + \sqrt{1 - 4T^{2}} \right) \sin^{2} \{$$

$$\uparrow_{z} = \notin + \frac{2(d - \pounds)T^{2}}{1 + \sqrt{1 - 4T^{2}}}$$

$$\begin{aligned}
\ddagger_{xz} &= (d - \varepsilon)T\cos\{, \ddagger_{yz} = (d - \varepsilon)T\sin\{\\ \ddagger_{xy} &= \frac{d - \varepsilon}{2} \left(1 + \sqrt{1 - 4T^2}\right)\sin\{\cos\{\\ |2T| \le 1, \\ 2T &= \sin[\\ \end{bmatrix} \end{aligned} \tag{17}$$

(17)

$$\left(\dagger_{x} - \dagger_{y}\right)^{2} + 4\ddagger_{xy}^{2} = \frac{(d - \epsilon)^{2}}{4} \left(1 + \cos\left[\right]^{2}\right)^{2}$$
: (20)

$$(\ddagger_{x} - \ddagger_{y})^{2} + 4\ddagger_{xy}^{2} = (d - \pounds)^{2}$$
(21)
(19),
-

x y:

$$\in = \in (x, y), [= [(x, y), \{ = \{(x, y) \\ (22) \quad (19) \}$$
 (22)

$$\left(1 - \frac{1}{2} (1 + \cos [)\cos^{2} \{ \right) \frac{\partial \epsilon}{\partial x} - \frac{d - \epsilon}{2} \sin [\cos^{2} \{ \frac{\partial []}{\partial x} - (d - \epsilon)(1 + \cos [)\cos \{ \sin \{ \frac{\partial \epsilon}{\partial x} - (d - \epsilon)(1 + \cos [)\cos \{ \sin \{ \frac{\partial \epsilon}{\partial y} - (d - \epsilon)(1 + \cos [)\cos \{ \sin \{ \frac{\partial \epsilon}{\partial y} - (d - \epsilon)(1 + \cos [)\cos \{ \sin \{ \frac{\partial \epsilon}{\partial y} - (d - \epsilon)(1 + \cos [)\cos 2 \{ \frac{\partial \epsilon}{\partial y} = 0 - (1 + \cos [)\cos 2 \{ \sin \{ \frac{\partial \epsilon}{\partial x} - (d - \epsilon)(1 + \cos [)\cos 2 \{ \sin \{ \frac{\partial \epsilon}{\partial x} - (d - \epsilon)(1 + \cos [)\sin 2 \{ (d - \epsilon)(1 + \cos [)\cos 2 \{ \frac{\partial \epsilon}{\partial x} + (1 - (d - \epsilon)(1 + \cos [)\sin 2 \{ (d - a)(1 + \cos [)\sin 2 \{ (d - a)$$

$$-\frac{d-\epsilon}{2}\sin\left[\sin^{2}\left\{\frac{\partial}{\partial y}+\left(d-\epsilon\right)\left(1+\cos\left[\right)\cos\left\{\sin\left\{\frac{\partial}{\partial y}\right\}=0\right.\right.\right.\right.\right.$$

$$-\frac{1}{2}\sin\left[\cos\left\{\frac{\partial\epsilon}{\partial x}+\frac{d-\epsilon}{2}\cos\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\sin\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial x}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial y}-\frac{d-\epsilon}{2}\sin\left[\cos\left\{\frac{\partial}{\partial y}-\frac{d-\epsilon}{2}\sin\left[\cos\left(\frac{\partial}{\partial y}-\frac{d-\epsilon}{2}\sin\left[\cos\left(\frac{\partial}{\partial y}-\frac{d-\epsilon}{2}\sin\left[\cos\left(\frac{d-\epsilon}{2}\sin\left(\frac{d-\epsilon}{2}\cos\left(\frac{d-\epsilon}$$

$$\begin{bmatrix} =f & \left(\frac{dy}{dx}\right)_{\Gamma,S} \end{bmatrix}$$

$$\Delta_{i} = 0, \ i = 1,...,4 :$$

$$\sqrt{2}\sqrt{\cos[-1]d} \in + (d - \epsilon)(\cos[+1])d\{=0 \qquad r \qquad (29)$$

$$\sqrt{2}\sqrt{\cos[-1]d} \in -(d - \epsilon)(\cos[+1])d\{=0 \qquad s$$

$$\Delta_{i} = 0, \ i = 5,6$$

$$\sqrt{2}\sqrt{\cos\left[-1}d\varepsilon + (d-\varepsilon)(\cos\left[+1\right)d\varepsilon = 0\right]$$

$$\sqrt{2}\sqrt{\cos\left[-1}d\varepsilon - (d-\varepsilon)(\cos\left[+1\right)d\varepsilon = 0\right]$$
(30)

$$\sin\frac{1}{2}d \in -\frac{1}{2}(d - \epsilon)\cos\frac{1}{2}d[=0, \\ \cos[=1, [=0, T=0,]]$$

$$\left(\frac{dy}{dx}\right)_{\Gamma,S} = -\operatorname{ctg}\{, \left(\frac{dy}{dx}\right)_{X} = \operatorname{tg}\{$$
(31)

$$d\{=0 \qquad r,s \qquad (32)$$

•

1. . .: ٠, . . , 2001. 704 . 2. . ., • •,• . , • •,• . , . , 2008. 832 . .: . . .: , 1966. 232 . . 1,2. : , 2001 3. , 2001, 2002. 4. 445, 448

: 0019, , . 374 93 288421 E-mail: <u>sedrak@mechins.sci.am</u> vardanyan_s@yahoo.com

:

,

24

-

•••

xOy

•

:

$$H^{2}s^{3}\frac{d^{2}H}{dx^{2}}\frac{d^{2}f}{dx^{2}} - H\left[8 + s^{2}\left(\left(\chi + k_{3}A_{1}\right)\frac{d^{2}H}{dx^{2}}\right]\frac{d\varphi}{dx} - 16\frac{dH}{dx}\varphi - sH\Omega^{2} \times \left[12f + sH\frac{dH}{dx}\left(k_{1}s\frac{df}{dx} - k_{2}\chi\varphi\right) - \frac{k_{3}sH^{2}}{2}\left(A_{1}s\frac{d^{2}f}{dx^{2}} - \overline{\Delta}_{2}\frac{d\varphi}{dx}\right)\right] = 0$$

$$s^{3}H^{2}\frac{\partial^{3}f}{\partial\overline{x}^{3}} + 2s^{3}H\frac{dH}{d\overline{x}}\frac{d^{2}f}{d\overline{x}^{2}} - H^{2}s^{2}\left[\left(\chi + k_{3}A_{1}\right)\frac{d^{2}\varphi}{d\overline{x}^{2}}\right] - \left[(\chi + k_{3}A_{1})\frac{dH}{d\overline{x}}\right]\frac{d\varphi}{d\overline{x}} + 8\varphi + \Omega^{2}H^{2}s^{2}\left(k_{1}s\frac{df}{d\overline{x}} - k_{2}\chi\varphi\right) = 0$$
(1)

$$A_{1} = a_{13}B_{11} + a_{23}B_{12}, \ \Delta_{2} = a_{13}(a_{55}B_{11} + A_{1}) + a_{23}(a_{55}B_{12} + A_{2})$$
(2)
$$x = a\overline{x}, \ z = h_{0}\overline{z}, \ s = h_{0}/a, \ h = h_{0}H, \ B_{ij} = \alpha_{ij}B_{11}$$

$$\chi = a_{55}B_{11}, \overline{\Delta}_2 = B_{11}\Delta_2, \ \omega^2 = B_{11}\Omega^2 / \rho a^2$$

$$w = h f \cos \omega t, \ \omega = B \cos \omega t, \ \mu = h \mu \cos \omega t$$
(3)

							1
		Ω^1_1	Ω_2^1	Ω_3^1	Ω_1^2	Ω_2^2	Ω_3^2
_		0.2849	1.396	2.564	_	_	_
		0.2798	1.064	2.227	16.59	17.34	18.47
		0.2485	0.7305	1.155	5.805	7.482	9.832
		0.2744	1.119	2.652	_	_	_
		0.2701	1.049	2.282	14.46	17.52	21.33
		0.2440	0.7350	1.158	5.544	7.823	10.05
		0.2279	1.026	2.231	_	_	_
		0.2272	1.026	2.231	13.39	16.12	19.96
		0.1988	0.6506	1.048	4.815	6.846	9.998
		0.3131	1.181	2.652	_	_	_
		0.3093	1.108	2.304	16.37	17.46	22.01
		0.2866	0.7937	1.242	6.587	7.665	10.57
		0.2839	1.135	2.646	_	_	_
		0.2793	1.062	2.280	15.13	17.24	21.47
		0.2499	0.7371	1.161	5.776	7.816	10.12
		0.2615	1.097	2.672	_	_	_
		0.2565	1.026	2.282	13.64	17.86	21.22
		0.2255	0.6996	1.097	5.262	7.813	10.01

2

		Ω^1_1	Ω_2^1	Ω^1_3	Ω_1^2	Ω_2^2	Ω_3^2
_		0.6458	1.782	3.433	_	_	_
		0.6212	0.9676	2.352	24.13	25.34	28.17
		0.4933	0.7894	1.183	7.934	8.756	10.23
		0.6287	1.726	3.424	-	—	_
		0.5812	0.9452	2.214	21.12	23.32	24.77
		0.4426	0.7118	1.052	6.127	8.152	10.27
		0.8162	1.986	2.834	-	_	_
		0.7625	1.245	2.126	20.26	21.39	24.36
		0.5944	0.8851	1.247	6.652	8.123	9.756
		0.4724	1.369	3.657	-	_	_
		0.4413	0.9942	2.243.	22.37	24.52	26.31
		0.3112	0.7751	1.253	7.627	8.745	10.22
		0.5963	1.679	3.391	_	_	—
		0.5522	0.8552	2.214	20.32	21.53	23.08
		0.4126	0.6928	0.9852	5.827	7.452	9.273
		0.6686	1.767	3.419	—	_	—
		0.6053	1.123	2.382	18.74	20.06	21.82
		0.5255	0.7196	1.138	5.267	7.965	11.20

						3
	Ω^1_1	Ω_2^1	Ω^1_3	Ω_1^2	Ω_2^2	Ω_3^2
_	0.4451	1.442	2.991	_	_	_
	0.4256	0.8856	1.358	18.72	20.08	22.32
	0.3458	0.6512	0.9712	6.110	7.526	9.021
	0.3919	1.366	2.867	_	_	_
	0.3641	0.8655	1.526	15.52	16.96	18.02
	0.3125	0.6317	1.124	5.470	7.027	8.481
	0.4790	1.452	2.573	_	_	_
	0.4327	0.8941	1.126	12.48	14.21	16.30
	0.3352	0.6422	0.8815	4.765	6.846	8.093
	0.3846	1.223	3.072	_	_	_
	0.3614	1.021	1.528	17.54	18.66	20.32
	0.2911	0.7753	1.116	5.682	6.235	7.254
	0.4602	1.426	2.959	_	_	_
	0.4123	0.7824	1.023	15.37	16.02	18.23
	0.3196	0.6422	0.8361	5.154	6.146	7.113
	0.4883	1.45367	3.066	-	-	_
	0.4521	0.8214	1.257	13.34	14.66	17.52
	0.3523	0.6653	0.9752	5.862	7.813	9.108

4

		Ω^1_1	Ω_2^1	Ω_3^1	Ω_1^2	Ω_2^2	Ω_3^2
_		0.1015	0.6361	1.782	_		_
		0.09854	0.4413	0.9273	17.41	18.54	19.87
		0.07411	0.3620	0.7554	6.216	8.181	9.832
		0.0631	0.5428	1.662	_		_
		0.06051	0.3702	0.8833	16.14	17.98	19.72
		0.04356	0.2563	0.6751	6.507	8.256	9.583
	•	0.1139	0.6766	1.583	_		_
	•	0.1089	0.4978	0.9852	14.77	16.32	18.23
		0.0791	0.3895	0.6623	5.254	7.246	8.223
	•	0.0822	0.6198	1.750	-	_	_
	•	0.0798	0.5214	0.8814	17.41	18.55	20.21
		0.5847	0.4352	0.6521	7.867	8.565	11.57
	•	0.1421	0.7117	1.839	-	_	_
	•	0.1342	0.5684	1.154	17.21	19.53	21.11
		0.1023	0.4781	0.7548	6.837	7.845	10.32
		0.1501	0.6962	1.787	-	_	-
	•	0.1432	0.5412	1.298	16.44	17.86	19.24
		0.1545	0.4547	0.8851	6.286	7.913	9.518

E-mail: <u>gnungev2002@yahoo.com</u>

____, .., .. ,

,

[1].

$$a(t) = a_0 + k\sqrt{t}$$
 (1)
 $a_0 - , k - , t - , t -$

-

.

,

,

, ,

_

-

$$\ell_0$$
 ,

:

$$\ell_{1}(t) = \ell_{0} - \ell_{2} - (K_{1} - K)\sqrt{t}$$
(2)

$$\ell_{2} - ,$$
(K_{1} > K).

$$t_* = (\ell_0 - \ell_2)^2 (K_1 - K)^{-2}$$
(3)

 $\ell_0.$

,

$$\frac{\partial T}{\partial t} = \left| \begin{array}{c} \frac{\partial^2 T}{\partial x^2}, & 0 \le x \le 0 \end{array}\right.$$

$$T = \left\{ {}_1(t), & x = 0 \\ T = T_c, & x = a(t) \end{array}$$

$$\left| \begin{array}{c} - \end{array} \right|$$
(5)

•

,

,

,

(4), (5) [2]:

$$T = \frac{2}{a(t)} \sum_{n=1}^{\infty} \exp\left(\frac{|f^2 n^2 t}{a(t)}\right) \sin\frac{fnx}{a(t)} \times \left[\int_{0}^{a(t)} f(x') \sin\frac{fnx'}{a(t)} dx' + \frac{f|n}{a(t)} \left(\int_{0}^{t} \exp\left(\frac{|f^2 n^2\}}{a^2(t)}\right) \{1(t)\} d\} - (-1)'T_c(t)\right)\right]$$
(6)

$$f(x) - t = 0.$$

,

$$f_{y} = -\frac{rET}{1-\ell} + \frac{1}{a(t)(1-\ell)} \times$$

$$\times \int_{0}^{a(t)} rTEdx + \frac{12\left(x - \frac{a(t)}{2}\right)}{a^{3}(t)} \int_{0}^{a(t)} rTE\left(x - \frac{a(t)}{2}\right) dx$$
(7)
(7)

·

,

(),

,

,

$$P_i(X) = -\dagger_y^i(X), |X| < 1$$
$$2\ell_i - i - .$$

-

$$\Phi + M_1(\Phi) + {}^2M_2(\Phi) = -\Gamma E_0(1+m)e^{-3\pi}$$

$$M_1 \quad M_2 -$$
(8)

$$\begin{split} M_{1}(\Phi) &= 2\Theta_{x}\Delta \frac{\partial \Phi}{\partial x} + 2\Theta_{y}\Delta \frac{\partial \Phi}{\partial x} + 2(1+\varepsilon)\Theta_{xy}\Delta \frac{\partial^{2}\Phi}{\partial x\partial y} + \\ &+ \Theta_{xx} \left(\frac{\partial^{2}\Phi}{\partial x^{2}} - \varepsilon \frac{\partial^{2}\Phi}{\partial y^{2}} \right) + \Theta_{yy} \left(\frac{\partial^{2}\Phi}{\partial y^{2}} - \varepsilon \frac{\partial^{2}\Phi}{\partial x^{2}} \right) \\ M_{2}(\Phi) &= \Theta_{x}^{2} \left(\frac{\partial^{2}\Phi}{\partial x^{2}} - \varepsilon \frac{\partial^{2}\Phi}{\partial y^{2}} \right) + \\ &+ 2(1+\varepsilon)\Theta_{x}\Theta_{y} \frac{\partial^{2}\Phi}{\partial x\partial y} + \Theta_{y}^{2} \left(\frac{\partial^{2}\Phi}{\partial y^{2}} - \varepsilon \frac{\partial^{2}\Phi}{\partial x^{2}} \right) \\ \Theta &= \frac{T(x,t)}{T_{0}}, \quad T_{0} \quad - \qquad , \\ &; \quad \}, E_{0} \quad - \end{split}$$

;

 $m = 0 , \quad m = \frac{\epsilon}{1 - \epsilon} - , \\ (8) , \quad m = \frac{\epsilon}{1 - \epsilon} - , \\ (8) , \quad m = \frac{\epsilon}{1 - \epsilon} - , \\ \theta = \Phi_0 + \sum_{n=1}^{\infty} \beta^n \cdot \Phi_n , \\ \Phi_0 - , \\ (9), \quad (8) , \quad m = \frac{\epsilon}{1 - \epsilon} - , \\ (9) , \quad \theta_0 - ,$

$$\Delta \Delta \Phi_0 = -\Gamma E_0 (1+m) \Delta \Theta$$

$$\dots \qquad (10)$$

$$\Delta \Delta \Phi_n = -M_1 (\Phi_{n-1}) - M_2 (\Phi_{n-2}) - \Gamma E_0 (1+m) \frac{\Theta \Delta (-1)'}{n!}$$

$$\frac{\partial^2 \Phi_n}{\partial x^2} = -P_n(x_i), \ \left| x_i \right| \le \ell_i, \ y = 0, \ i = 1,2$$

$$\begin{split} K_{1} &= S_{0}\sqrt{\ell_{1}} \frac{1}{M} \sum_{m=1}^{\infty} (-1)^{m+M} U_{1}(t_{m}) tg \frac{-m-1}{4M} \cdot f \\ K_{2} &= -S_{0}\sqrt{\ell_{2}} \frac{1}{M} \sum_{m=1}^{M} (-1)^{m+M} U_{2}(t_{m}) ctg \frac{2m-1}{4M} \cdot f \\ K_{3} &= -S_{0}\sqrt{\ell_{2}} \frac{1}{M} \sum_{m=1}^{M} (-1)^{m+M} U_{2}(t_{m}) tg \frac{2m-1}{4M} \cdot f \\ K_{1} , K_{2} , K_{3} - , K_{2} , K_{3} - , K_{2} , K_{3} - , K_{1} , M - , K_{2} , M - , K_{3} , M - , K_{3}$$

. ,
$$\ell_0 = 6$$
 , ,

,
$$\ell_0 = 6$$
 $a_0 = 50$

.

». . 5. : , 1977. .111-127. 4. . ., . ., . . , " , 2006. . 112-118. : ." 5. . ., . ., . . , 1976. . – : 443 .

3/54

..., .: (+37410) 52-49-67 E-mail: xikar@web.am

А

: , , . . , . 100 .(+37410) 25-38-63 E-mail: <u>david0032@yahoo.com</u>

:

 \mathbf{M}

K. . ., : , , , , 105 .: (+37410) 55-67-69 10⁻¹¹ - 10⁻¹⁶ ² [Brace, 1984; McNabb, Wilcock, 1995].

0 [

,

(

,

,

)

[Facca, Tonani, 1967; Keith et al., 1978; Keith, Muffler, 1978; White et al., 1988; Carroll et al., 1998],

[Tivey, Delaney, 1986; Peter, Scott, 1988; Delaney et al., 1992; Tivey et al., 1999].

(

1984; Wells, Ghiorso, 1991] et al., 1995].

,

).

,

, [Walder, Nur, [Verma, Pruess, 1988; Battistelli

,

., 1991].

.[Lowell et al., 1993],

,

•

)

,

,

,

,

b(x,t)

,

.

,

$$\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial y^2}, \quad 0 \le y < \infty \tag{1}$$

$$, \qquad (1) \qquad x \qquad .$$

$$, \qquad \dots \qquad y = 0$$

,

• ,

(

,

•

,

,

•

$$c_{pf}q(t)\frac{\partial T}{\partial x}\Big|_{y=0} = 2k\frac{\partial T}{\partial y}\Big|_{y=0}$$

$$q(t) = \rho_f v(x,t)b(x,t) -$$
(2)

	b(x,t),	\dots_f , ι	c_{pf}	-	,	,	
, <i>k</i> –							,
				T(x, z)	$y,0) = T_0$		-
t = 0		,	f(x	$t = T(x_0)$	$(t) - T_{0}$		
	·	(, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
).				$f_0(t) = j$	f(0,t),	$(\mathbf{x}, \mathbf{v}, t)$ -	-T
		(1)		1(3,)	,,,, 1	,,,,,,,,,,	10.
$T_1(x,0,t) = f(x,t)$				$T_1 \rightarrow 0$	$y \rightarrow$	•∞.	
		Ox	-	21	,	,	-
			(1)	$0 \leq .$	$x \leq l c$		(2)
(,			
,).	,			(
$y = \pm nl(n = 1, 2, 3),$		(2))			y = l ,	
y = 0		$(\partial T_1/$	$\left(\partial y\right)\Big _{y=0} = 0$	0.	,		
, $T_{1}($	(x, y, t)		2				-
(1)			•	,			
						b(x,t)).

 $b(0,x) = b_0 = \text{const}.$

[Wood, Hewett, 1982; Lowell et al., 1993]

$$\rho_s \frac{\partial b}{\partial t} = q(t)\gamma \frac{\partial T_1}{\partial x}\Big|_{y=0}$$
(3)

,

..._s –

,

,

- 172 -

_

.

(), $x = \frac{\partial c_s}{\partial T} - \frac{1}{y = l}$. (3) y = l. (. .), (1-3) $T_1(x, y, t), f(x, t), b(x, t)$

 $f(x,t) \quad b(x,t)$.

,

-

$$(\partial T / \partial y)$$
 $y = 0$ (
) $y = l$ (
) $f(x,t)$. , (

).

$$\begin{array}{c}
(2) \\
f(x,t). \\
\frac{\partial T_{1}}{\partial y}\Big|_{y=0} = -\int_{0}^{t} \frac{\partial f}{\partial \tau} K(t-\tau) d\tau \qquad (4) \\
K(t-\tau) = K_{1}(t-\tau) = \frac{1}{\sqrt{\pi a^{2}(t-\tau)}} \\
K(t-\tau) = K_{2}(t-\tau) = \frac{1}{l} \theta \left(0; \frac{t-\tau}{\tau_{0}} \right) \\
\downarrow_{0} = l^{2}/a^{2}, \quad _{x_{2}}(p,t) - & . \\
(4) \quad (2) & , \\
(5), & q(t) \\
(5), & f(x,t)
\end{array}$$

b(x,t).

$$c_{pf}q(t)\frac{\partial f}{\partial x} = -2k \left[\int_{0}^{t} \frac{\partial f}{\partial \tau} K(t-\tau) d\tau \right]$$
(5)

$$\rho_s \frac{\partial b}{\partial t} = q(t)\gamma \frac{\partial f}{\partial x}$$
(6)
(5-6)

b(x,t).

,

, (

,

)

•

,

,

,

$$f(0,t) = f_0(t)$$
(7)
$$b(0,x) = b_0$$
(8)

(

)

, .

$$q(t) = \frac{q_0 L}{b_0^3} \left[\int_0^L \frac{dx}{b^3(x,t)} \right]^{-1}$$
(9)
(5), (6) (9)
(7) $f(x,t), b(x,t) = q(t)$

$$\frac{\partial f}{\partial x} = -A \int_{0}^{t} \frac{\partial f}{\partial \tau} \vartheta_{2}(0; t - \tau) d\tau$$
⁽¹⁰⁾

$$\frac{\partial b}{\partial t} = B \frac{\partial f}{\partial x}$$
(11)

$$\tau_{0} = l^{2} / a^{2} (a^{2} - b),$$

$$f(x,t) \qquad \Delta T (b),$$

$$A = \frac{2k}{c_{pf}q_{0}}, B = \frac{q_{0}\gamma \Delta T l}{\rho_{s}a^{2}b_{0}}$$
(12)
(10),
(11)

•

,

•

,

$$x = 0.$$

$$b(0,t) = b_0 - ABb_0 \int_0^{p_0} \vartheta_2(0;\xi) d\xi \qquad (13)$$

$$p = \tau / \tau_0.$$

,

-

-

,

,

,

,

$$p = \tau / \tau_0 << 1.$$

$$9_2(0; y) \sim 1 / \sqrt{\pi y},$$

$$b(0,t) = b_0 - \frac{2ABb_0\sqrt{t}}{\sqrt{\pi \tau_0}} = b_0 - 2ABb_0\sqrt{\frac{a^2t}{\pi}} = b_0 - \frac{4k\gamma\Delta T}{c_{pf}\rho_s\sqrt{\pi a^2}}\sqrt{t}.$$

$$t^*$$

$$t^* = \frac{\pi a^2 c_{pf}^2 \rho_s^2 b_0^2}{16(\Delta T)^2 k^2 \gamma^2}$$
(14)

$$\tau_0 = l_0^2 / a^2 \qquad \qquad -$$

γ

,
$$b_{cr}$$
 , b_{cr} , b_{cr}

 ABb_0 .

$$b_{cr} = ABl = \frac{2\rho_{m}c_{pm}\Delta T\gamma l}{\rho_{s}c_{pf}}$$
(15)
$$b_{cr} \qquad \rho_{m} = 3.0 \cdot 10^{3} / ^{$$

[. Carroll t al., 1998],

_

-

- 176 -

•,

[5, 6]

. .

,

[1 – 4],

, P

,

,

•

Ox

,

Ox.

Оу

•

,

,

,

b (b < a) , c

T .

,

[-a,a]

, .

, . .

,

,

$$y < 0:$$

$$u(x, y)|_{y=0} = C_{1}, \quad \notin (x, y)|_{y=0} = -f(x) - \Gamma x + C_{2} \quad (-a < x < a)$$

$$\uparrow_{y}(x, y)|_{y=0} = \downarrow_{xy}(x, y)|_{y=0} = 0 \quad (a < |x| < \infty) \quad (1)$$

$$\uparrow_{x}(x, y), \uparrow_{y}(x, y), \downarrow_{xy}(x, y) \to 0 \quad x^{2} + y^{2} \to \infty$$

$$u(x, y) \quad \notin (x, y) - \qquad - \\ Ox \quad Oy, \quad , \quad \uparrow_{x}, \uparrow_{y}, \downarrow_{xy} - \\ , \quad \Gamma - \qquad , \quad C_{1} \quad C_{2} - - \\ (1) \quad - \\$$

. [1],

•

·

,

$$\begin{array}{l}
, & :\\ u(x) = u(x,0) = -\left[{_1} \int\limits_{ -\infty }^{\infty } {\ln \frac{1}{|x-s|}}^{\ddagger}(s) ds - \left[{_2} \int\limits_{ -\infty }^{\infty } {\operatorname{sign} (x-s) p(s) ds + C_1 } \right] \\
\in (x) = \in (x,0) = -\left[{_1} \int\limits_{ -\infty }^{\infty } {\ln \frac{1}{|x-s|} p(s) ds + \left[{_2} \int\limits_{ -\infty }^{\infty } {\operatorname{sign} (x-s)}^{\ddagger}(s) ds + C_2 } \right] \\
\left[{_1} = 2(1-{\mathbb{E}^2}) / E, \quad \left[{_2} = (1+{\mathbb{E}})(1-2{\mathbb{E}}) / E, \quad (-\infty < x < +\infty) \right] \\
\end{array}$$
:

,

-

$$\frac{1}{f} \int_{-}^{f} \frac{\{(s)ds}{s-x} - ith(f\sim)\{(x) = g(x) \\ \{(x) = p(x) + i\ddagger(x); \sim = \frac{1}{2f}\ln(3-4v), \quad g(x) = \frac{r+f'(x)}{f[_{1}]} \\ p(x) = \ddagger(x) - e^{-\frac{r}{2}} + \frac{f'(x)}{f[_{1}]}$$
(4)

,

$$\int_{-a}^{a} p(x)dx = P; \quad \int_{-a}^{a} \ddagger (x)dx = T; \quad \int_{-a}^{a} xp(x)dx = Pb - Te$$
,
(5)
,
(4)
(5),
(5) -
(7).

,

(4):

$$\frac{1}{f} \int_{-a}^{a} K(x-s) \{ (s)ds - i th(f^{-}) \{ (x) = g(x) \\
K(x) : \\
1) \frac{1}{2} \operatorname{ctg} \frac{x}{2}; \quad 2) \frac{1}{2} \operatorname{cth} \frac{x}{2}; \quad 3) \frac{1}{2 \sin(x/2)}; \quad 4) \frac{1}{2 \operatorname{sh}(x/2)} \\
,$$

,

_

2.

•

,

$$\frac{1}{fi} \int_{-a}^{a} \frac{\{z(s)ds\}}{s-x} = \operatorname{th}(f\sim)\{z(x) \qquad (-a < x < a; -\infty < -<+\infty) \\ \{z(x) = (a-x)^{-\frac{1}{2}-i^{-}} (a+x)^{-\frac{1}{2}+i^{-}} \qquad x \in (-a,a) \\ S\{=\frac{1}{fi} \int_{-a}^{a} \frac{\{(s)ds\}}{s-x}.$$

 $\{ \ _{\sim}(x) :$

$$G(\sim) = \int_{-1}^{1} g(x) \{ \sum_{-\infty} (x) dx; g(x) = \frac{1}{f} \int_{-\infty}^{\infty} G(\sim) \{ \sum_{-\infty} (x) d\sim (a=1), (4) \}$$

_

•

-

,

$$\begin{aligned} & \sim = \sim_{0}, a = 1, \\ & \{ (x) = -\frac{i}{2} \operatorname{sh}(2f \sim_{0}) g(x) - \\ & - \frac{\operatorname{ch}^{2}(f \sim_{0})}{f} (1 - x)^{\frac{1}{2}i \sim_{0}} (1 + x)^{\frac{1}{2}+i \sim_{0}} \int_{-1}^{1} \frac{(1 - s)^{\frac{1}{2}+i \sim_{0}} (1 + s)^{\frac{1}{2}-i \sim_{0}}}{s - x} g(s) ds \ (6) \\ & (-1 < x < 1) \\ & , \\ & (6) \\ & (6) \\ \end{aligned}$$

, [6,8,9].

4.		
	,	: -
	, 1949. 380 .	
5.		: , 1974. 640 .
6.	,,	
		. : , 1976. 443 .
7.		. // :
	. 196941.	.98 – 109.
8.	Teocaris P.S., Loakimidis N.I. //Quart. A	Appl. Math. 35, 1977/78, 1, pp. 173–187.
9.	// . ,	, 2007. 13–16.

, .

. (+37493)-264632 E-mail: <u>hakobgrig@mail.ru</u>

:

. .- . ., ,

: , 0019, : (+37410)-62-10-25 E-mail: <u>mechins@sci.am</u>

18 .

(.1), 1 1.5 7-30 60 (.2). -20.

•

•

,

•,

,

,

,

3

. 3

[4]

[4]

-4

,

. 4.2 4.3

. 4

.4.3 –

:

_

1.	•,	•			
	-			.//	-
2.			,		,
3.	2000. 238 .	,			
		. // . ».	. «		.:
4				, 1970. 16-45.	
т.	•••,	-		. // .	

. 2005. .58. 1. .79-85.

5. ¶ñÇ·áñÛ³Ý J.Đ. ²Ùñ³ÝÇ åñáýÇÍÇ ³½¹»óáñÃÚáňÝÁ μ»ï áÝÇ ³Ùñ³ÝÇ Ñ³Ù³ï »Õ ³BË³ï ³ÝùáňÙ: ^oňÖÞäĐï »Õ³l³·Çň. 1/2007(1/2). ¿ç 8-11:

..., .: +37493578796 +37410423044 E-mail: <u>Davit-grigoryan@yandex.ru</u>

_____:

. +37493366211 . +37410647131 E-mail: <u>vvv-am@rambler.ru</u> ; <u>vvv@mechins.sci.am</u>

$$\begin{split} \ddot{R} + \ddot{S}_{ar}^{2} \dot{R} + 2u \ddot{R} - v 2\Gamma R \dot{R} + v 4 \dot{R} \ddot{R} + v R \ddot{R} + \frac{1}{t_{T}} \left(\frac{\breve{S}_{ar}^{2}}{\varkappa} R - -\frac{v \varkappa + 1}{\varkappa} \breve{S}_{ar}^{2} R^{2} + v R \ddot{R} + v \frac{3}{2} \dot{R}^{2} \right) &= \breve{S}_{ar}^{2} \breve{S} F \sin \breve{S} t - \frac{\breve{S}_{ar}^{2}}{t_{T}} F \cos \breve{S} t \\ u &= \frac{1}{2} \frac{1}{t_{T}} + \frac{2 \sim}{\cdots_{1}} \frac{1}{R_{0}^{2}} &= \frac{1}{2} \frac{1}{t_{T}} \left(1 + \frac{8}{3\varkappa} \frac{\sim}{\cdots_{1}} \frac{1}{\jmath_{2}} Nu \right), \quad t_{T} = \frac{2}{3\varkappa} \frac{R_{0}^{2}}{\jmath_{2}} Nu \end{split}$$
(1.1)
$$\breve{S}_{ar}^{2} &= \frac{3\varkappa p_{0}}{\cdots_{1}} \frac{1}{R_{0}^{2}}, \ r = \frac{3\varkappa + 1}{2} \breve{S}_{ar}^{2} \\ R - & , \qquad R - \\ & t, \forall - , \end{gathered}$$

,

1.

,

[1].

•

,

,

.

•

[2]

•

-

-

• •

••

$$t_T > 2f / \check{S}_{ar}$$

•

-

,

.

$$\frac{1}{2} \frac{1}{\check{S}_{ar}} \frac{1}{t_T} \sim \frac{2}{\dots_1} \frac{1}{R_0^2} \frac{1}{\check{S}_{ar}} \sim V, \quad \}_2 \text{ Nu} \sim \frac{8}{3x} \frac{1}{\dots_1}$$
,
$$R_0 \sim \frac{1}{V} \sqrt{\frac{4}{3x}} \sqrt{\frac{1}{1} \frac{1}{\sqrt{1} \frac{1}{1} \frac{1}{\sqrt{1} \frac{1}{1} \frac{1}{\sqrt{1} \frac{1}{1} \frac{1}{\sqrt{1} \frac{1}{\sqrt{$$

,

,

,

	(1.1)	$\check{S} = \check{S}_{ar}$
$\check{S} = 2\check{S}_{ar}, \check{S} = \check{S}_{ar}/2$		
()	,	

,

[3,4]. " $T_0 = t$,,

,

$$T_{1} = \forall t \qquad , \qquad R(t) = R(T_{0}, T_{1})$$

$$\frac{d}{dt} = \frac{\partial}{\partial T_{0}} + \forall \frac{\partial}{\partial T_{1}}, \quad \frac{d^{2}}{dt^{2}} = \frac{\partial^{2}}{\partial T_{0}\partial T_{1}} + \forall 2\frac{\partial^{2}}{\partial T_{0}\partial T_{1}} + \dots$$

$$\frac{d^{3}}{dt^{3}} = \frac{\partial^{3}}{\partial T_{0}^{3}} + \forall 3\frac{\partial^{3}}{\partial T_{0}^{2}\partial T_{1}} + \forall^{2}3\frac{\partial^{3}}{\partial T_{0}\partial T_{1}^{3}} + \dots$$

$$(1.2)$$

$$R = \pi (T, T) + \forall \pi (T, T) + \dots$$

$$(1.2)$$

$$R = r_0 (T_0, T_1) + \forall r_1 (T_0, T_1) + \dots$$
(1.3)
(1.2)

"

 r_0 ,

:

•

"

$$r_{0}(T_{0},T_{1}) = A(T_{1})e^{iS_{w}T_{0}} + \Lambda e^{iST_{0}} + k.c., \quad \Lambda = \frac{\tilde{S}_{ar}^{2}}{\tilde{S}^{2} - \tilde{S}_{ar}^{2}} \frac{F}{2}$$
(1.4)

$$A(T_{1}) - t , ,$$
(...)

$$A(T_{1}) - t , ,$$
(...)

$$A(T_{1}) - t , ,$$
(1.4) , ,

$$T_{0} , ,$$
(1.4) , ,

$$T_{0} , ,$$
(1.4) , ,

$$\frac{\partial r_{1}}{\partial T_{0}^{2}} + \tilde{S}_{ar}^{2}r_{1} = -i2\tilde{S}_{ar} \left(\frac{dA}{dT_{1}} + \tilde{S}_{ar}u_{1}A\right)e^{iS_{w}T_{0}} -$$
$$-i2\tilde{S}\left(u_{1} + \frac{\tilde{S}_{ar}^{2}}{\tilde{S}^{2}}\frac{1}{2t_{r}}\right)\Lambda e^{iST_{0}} + \frac{2\Gamma + 2\tilde{S}_{ar}^{2}}{2}A^{2}e^{i2S_{w}T_{0}} +$$
(1.5)

$$+ \frac{2\Gamma + 5\tilde{S}^{2}}{2}\Lambda^{2}e^{i2ST_{0}} + (2\Gamma + \tilde{S}_{ar}^{2} + 3\tilde{S}_{ar}\tilde{S} + \tilde{S}^{2})A\Lambda e^{i(S_{w} + \tilde{S})T_{0}} +$$
$$+ (2\Gamma + \tilde{S}_{ar}^{2} + 3\tilde{S}_{ar}\tilde{S} + \tilde{S}^{2})\overline{A}\Lambda e^{-i(S_{w} - S)T} + k.c.$$
$$u_{1} = \frac{1}{\tilde{S}_{ar}}\left(u_{-} + \frac{\kappa - 1}{2\kappa}\frac{1}{t_{T}}\right), \quad u_{-} = \frac{2}{\cdots_{1}}\frac{1}{R_{0}^{2}}$$
(1.5) , ,

 $A(T_1).$

2.

) $\check{S} \approx 2\check{S}_{ar}$. $v\dagger = 2\check{S}_{ar} - \check{S}$. $\check{S}T_0 = 2\check{S}_{ar}T_0 - \dagger T_1$

-

(1.5)

,

(

 r_1 ,

$$\frac{dA}{dT_{1}} = -\mathbf{U}_{1}\tilde{S}_{ar}A - i\tilde{S}_{ar}G\Lambda\bar{A}e^{-i^{\dagger}T_{1}}$$
(2.1)
$$\Lambda = \frac{1}{2}\frac{F}{(1-\dagger_{11})(3-\dagger_{11})}, \quad G = \frac{3x - \dagger_{11}(1-\dagger_{11})}{2}, \quad \dagger_{11} = \dagger\frac{\dagger}{\tilde{S}_{ar}} = 2 - \frac{\tilde{S}}{\tilde{S}_{ar}} - \frac{1}{\tilde{S}_{ar}} = 2 - \frac{\tilde{S}}{\tilde{S}_{ar}} - \frac{1}{\tilde{S}_{ar}} + \frac{1}{\tilde{S}_{ar}} = 2 - \frac{\tilde{S}}{\tilde{S}_{ar}} - \frac{1}{\tilde{S}_{ar}} - \frac$$

$$\dot{B} + \tilde{S}_{ar} \frac{2u_1 - i\dot{\dagger}_{11}}{2} B + i\tilde{S}_{ar} G\Lambda \overline{B} = 0$$
(2.2)
(2.2)

$$B(t) = b_{1}e^{k_{1}T} + b_{2}e^{k_{2}T} - i\frac{\sqrt{G^{2}F^{2} - \Sigma^{2}}}{GF - \Sigma} (b_{1}e^{k_{1}T} - b_{2}e^{k_{2}T}), \quad T = \tilde{S}_{ar}t \quad (2.3)$$

$$k_{1,2} = -u_{1} \pm \frac{\dagger_{11}}{2G}\sqrt{G^{2}F^{2} - \Sigma^{2}}, \quad \Sigma = \dagger_{11}(1 + \dagger_{11})(3 + \dagger_{11}), \quad b_{1,2} = \text{const}$$

$$u_{1} \qquad \dagger_{11}$$

 $B \rightarrow 0$ F

•

 $t \to \infty,$ $, \qquad (1.4), \qquad r_0$ $, \qquad (2.3)$ $\frac{\Sigma}{G} \le F \le \frac{\Sigma}{G} \sqrt{1 + 2\left(\frac{\mathsf{u}_1}{\mathsf{t}_{11}}\right)^2} \qquad F \qquad (2.3)$

$$R(t) = 2\left(b_1 e^{k_1 T} + b_2 e^{k_2 T}\right) \cos\left(\frac{2 + \dagger_{11}}{2}T\right) + 2\sqrt{\frac{FG + \Sigma}{FG - \Sigma}} \times \left(b_1 e^{k_1 T} + b_2 e^{k_2 T}\right) \sin\left(\frac{2 + \dagger_{11}}{2}T\right) + \frac{\dagger_{11}}{\Sigma}F\cos\left[\left(2 + \dagger_{11}\right)T\right]$$

$$F < \Sigma/G \qquad k_{1,2}$$
(1.3)
$$(2.4)$$

$$R(t) = 2b_{1}e^{-u_{1}T}\left(1 - \sqrt{\frac{\Sigma + GF}{\Sigma - GF}}\right)\cos\left(\frac{2 + t_{11}}{2} + \frac{t_{11}}{2\Sigma}\sqrt{\Sigma^{2} - G^{2}F^{2}}\right)T + + 2b_{2}e^{-u_{1}T}\left(1 + \sqrt{\frac{\Sigma + GF}{\Sigma - GF}}\right)\cos\left(\frac{2 + t_{11}}{2} - \frac{t_{11}}{2\Sigma}\sqrt{\Sigma^{2} - G^{2}F^{2}}\right)T + + \frac{t_{11}}{\Sigma}F\cos(2 + t_{11})T$$
(2.5)

$$\epsilon$$
 $b_{1,2}$. (2.4),

•

(2.5) ,
$$T \to \infty$$

$$R = \frac{\dagger_{11}}{\Sigma} F \cos(2 + \dagger_{11})T \qquad (2.6)$$

(2.4),
$$-$$

 $p_0 = 0,1$ $F = 0,25$ (1,

,

$$R_0 = 1 \cdot 10^{-6} , u_1 = 0.144, b_1 = b_2 = 0.049, \dagger_{11} = 0.098)$$
(2,
$$R_0 = 1 \cdot 10^{-4} , u_1 = 0.085, b_1 = b_2 = 0.049, \dagger_{11} = 0.099)$$
(x = 1.4)

$$\frac{1}{t_T} = \frac{10}{3} \mathsf{u}_{-}, \quad \frac{1}{t_T} = 6 \left(\check{\mathsf{S}}_{ar}^2 \mathsf{u}_{-} \right)^{1/3}$$

,

• •

.

(2.6),
(Nu
$$\rightarrow 0$$
)
 $t = 16f/\tilde{S}_{ar}$.
,
(2.6).
(2.5),
,
 F ,
3.
()
 $\tilde{S} \approx \tilde{S}_{ar}/2$.
 $v^{\dagger} = \tilde{S} - \tilde{S}_{ar}/2$,
 $2\tilde{S}T_0 = \tilde{S}_{ar}T_0 + 2^{\dagger}T_1$
(1.5)
(1.5)

-

t

$$\dot{A} = -\breve{S}_{ar} \mathsf{u}_{1} A - i \frac{2 r + 5 \breve{S}_{ar}^{2}}{4 \breve{S}_{ar}} \Lambda^{2} e^{i 2 t_{12} T}, \quad T = \breve{S}_{ar} t$$
$$\Lambda = -\frac{2 F}{(1 - 2 t_{12})(3 + 2 t_{12})}, \quad t_{12} = \mathsf{v} \frac{t}{\breve{S}_{ar}} = \frac{\breve{S}}{\breve{S}_{ar}} - \frac{1}{2}$$

$$A(t) = A_{0}e^{-u_{1}T} - i\frac{1}{u_{1} + i2t_{12}} \frac{2r + 5\tilde{S}_{ar}^{2}}{4\tilde{S}_{ar}^{2}} \Lambda^{2}e^{i2t_{12}T}$$

$$\frac{1}{u_{1} + i2t_{12}} = \frac{1}{\sqrt{u_{1}^{2} + 4t_{12}^{2}}} e^{-iactg2t_{12}/u_{1}}$$

$$A_{0} = A(0) - \qquad (3.1)$$

$$A = ae^{is/2}, \quad a(t) - , \quad s(t) -$$
(1.3), (3.1),

$$R(t) = a_0 e^{-u_1 T} \cos(T + S_0) - \frac{4F}{(1 - 2t_{12})(3 + 2t_{12})} \cos\frac{1 + 2t_{12}}{2}T + \frac{8r + 5\tilde{S}_{ar}^2 (1 + 2t_{12})^2}{2\tilde{S}_{ar}^2 (1 - 2t_{12})^2 (3 + 2t_{12})^2} \frac{F^2}{\sqrt{u_1^2 + 4t_{12}^2}} \left[\sin(1 + 2t_{12})T - \arctan\frac{2t_{12}}{u_1}\right]$$

,

 $(-\infty < \alpha < \infty)$

,

,

 (α,β) ; $0 \le \alpha \le l$, $l \qquad 0 \leq \beta \leq \beta_0),$

,

•

$$R^{-2} = k_2^2 \sum_{m=-\infty}^{\infty} R_m \exp(imk_1\beta), k_1 > 0, 0 \le \beta \le \beta_0$$

$$\beta_0 = 2\pi p/k_1, p \in N, \quad \sum_{m=-\infty}^{\infty} |R_m| < \infty$$
(1)
$$k_0 = 2\pi n_0 / l, n_0 \in N.$$

,
$$k_2 = \pi/l$$
,

:

r,s

-

-

_

$$-B_{11}\frac{\partial^{2}u_{1}}{\partial\alpha^{2}} - B_{66}\frac{\partial^{2}u_{1}}{\partial\beta^{2}} - (B_{12} + B_{66})\frac{\partial^{2}u_{2}}{\partial\alpha\partial\beta} + \frac{B_{12}}{R}\frac{\partial u_{3}}{\partial\alpha} = \lambda u_{1}$$

$$-(B_{12} + B_{66})\frac{\partial^{2}u_{1}}{\partial\alpha\partial\beta} - B_{66}\frac{\partial^{2}u_{2}}{\partial\alpha^{2}} - B_{22}\frac{\partial^{2}u_{2}}{\partial\beta^{2}} + B_{22}\frac{\partial}{\partial\beta}\left(\frac{u_{3}}{R}\right) = \lambda u_{2} \qquad (2)$$

$$-\frac{B_{12}}{R}\frac{\partial u_{1}}{\partial\alpha} - \frac{B_{22}}{R}\frac{\partial u_{2}}{\partial\beta} + \frac{B_{22}}{R^{2}}u_{3} = \lambda u_{3}$$

$$u_{1}, u_{2}, u_{3} - , \qquad , \qquad R^{-1} = R^{-1}(S) -$$

$$, \quad B_{ij} - , \qquad , \qquad S -$$

$$(1).$$

l .

$$\frac{B_{12}}{B_{22}} \frac{\partial u_1}{\partial \alpha} + \frac{\partial u_2}{\partial \beta} - \frac{u_3}{R} \bigg|_{\beta = 0, \beta_0} = 0, \quad \frac{\partial u_2}{\partial \alpha} + \frac{\partial u_1}{\partial \beta} \bigg|_{\beta = 0, \beta_0} = 0$$
(3)

$$u_i(\alpha + 2\pi/k_2, \beta) = u_i(\alpha, \beta), \ i = \overline{1, 3}.$$
(4)

$$\frac{\partial u_1}{\partial \alpha} + \frac{B_{12}}{B_{11}} \left(\frac{\partial u_2}{\partial \beta} - \frac{u_3}{R} \right) \Big|_{\alpha = 0, l} = 0, \quad u_2 \Big|_{\alpha = 0, l} = 0$$
(5)
(3), (4)
o

e: (3)
$$s = 0$$

 $\beta = \beta_0$, (4) $k_2 = 2f n_0/l$,
 $n_0 \in N$ (. 1). (3),(5) $-$
 $r = 0$ $r = l$, $k_2 = \pi/l$ (. 2).
(2)-(4) (2),(3),(5) $[0, \}_0] - -$

$$\Omega(\beta,\theta) = \frac{B_{66}(B_{11}B_{22} - B_{12}^2)R^{-2}(\beta)\sin^4\theta}{B_{66}(B_{11}\sin^4\theta + B_{22}\cos^4\theta) + (B_{11}B_{22} - B_{12}^2 - 2B_{12}B_{66})\cos^2\theta\sin^2\theta} \quad (6)$$
$$0 \le \beta \le s, \ 0 \le \theta \le 2\pi$$

 $[0,\lambda_{0}] \qquad (2)-(4)$ $(2),(3),(5) [1]. \qquad (2) \qquad \} > \}_{0}$ $u_{1} = \cos(k_{2}n\alpha) \sum_{m=-\infty}^{\infty} u_{n,m} \exp((\chi + im)k_{1}\beta)$ $u_{2} = \sin(k_{2}n\alpha) \sum_{m=-\infty}^{\infty} v_{n,m} \exp((\chi + im)k_{1}\beta) \qquad (7)$ $u_{3} / R = k_{2} \sin(k_{2}n\alpha) \sum_{m=-\infty}^{\infty} w_{n,m} \exp((\chi + im)k_{1}\beta)$ $(7) \qquad (7) \qquad (2),$

(2),

$$\begin{aligned} c_{n,m}(\chi)u_{nm} &= n \, a_{n,m}(\chi)w_{n,m}, \ c_{n,m}(\chi)v_{n,m} = iq_{m} \, b_{n,m}(\chi)w_{n,m} \\ c_{n,m}(\chi) &= \frac{B_{22}}{B_{11}} q_{m}^{4} + \left[\frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}} n^{2} - \frac{B_{22} + B_{66}}{B_{11}} \eta^{2}\right] q_{m}^{2} + \\ &+ (n^{2} - \eta^{2}) \left(n^{2} - \frac{B_{66}}{B_{11}} \eta^{2} \right), \ \eta^{2} &= \frac{\lambda}{k^{2}B_{66}}, \ q_{m} &= \frac{k_{1}}{k_{2}}(\chi i - m) \end{aligned} \tag{8}$$

$$b_{n,m}(\chi) &= \frac{B_{22}}{B_{11}} q_{m}^{2} + \frac{B_{11}B_{22} - B_{12}^{2} - B_{12}B_{66}}{B_{11}B_{66}} n^{2} - \frac{B_{22}}{B_{11}} \eta^{2} \\ a_{n,m}(\chi) &= \frac{B_{22}}{B_{11}} q_{m}^{2} - \frac{B_{12}}{B_{11}} n^{2} + \frac{B_{12}}{B_{11}} \eta^{2}, \ m = 0, \pm 1, \pm 2, \dots \end{aligned} \tag{8}$$

$$([2] .287), \qquad (8)$$

 $R_{n,m}(0) \neq 0 \ (m = 0, 1, 2, \dots) ,$

$$\sum_{\gamma=1}^{\infty} R_{\gamma} \frac{P_{n,m-\gamma}(\chi)}{R_{n,m}(0)} \omega_{n,m-\gamma} + \frac{R_{n,m}(\chi)}{R_{n,m}(0)} \omega_{n,m} + \sum_{\gamma=1}^{\infty} R_{-\gamma} \frac{P_{n,m+\gamma}(\chi)}{R_{n,m}(0)} \omega_{n,m+\gamma} = 0$$
(9)
$$m = 0, \pm 1, \pm 2, \dots$$

$$P_{n,\alpha}(\chi) = (q_{\alpha})^{2} \eta^{2} - (n^{2} - \eta^{2}) \left(\frac{B_{11}B_{11} - B_{12}^{2}}{B_{22}B_{66}} n^{2} - \eta^{2} \right), \omega_{n,\alpha} = w_{n,\alpha} / c_{n,\alpha}(\chi)$$
(10)

$$R_{n,m}(\chi) = \frac{B_{11}}{B_{22}} \eta^2 c_{n,m}(\chi) + R_0 P_{n,m}(\chi), \ \alpha = m - \gamma, m, m + \gamma$$
$$q_m - R_{n,m}(\chi) = 0, m = 0, \pm 1, \pm 2, \dots$$

$$q_{m}^{(j)} = \theta_{n}^{(j)} k_{1} / k_{2}, \ j = \overline{1,4}, \ m = 0, \pm 1, \pm 2, \dots$$
(11)
$${}_{m_{n}^{(j)}}, \ j = \overline{1,4}, \ m, \ {}_{m_{n}^{(1)}}, \ {}_{m_{n}^{(2)}}, \ (9), \ \Delta(it), \dots$$
(12)
$$\Delta(i\chi) = 0$$
(12)

$$\Delta(i\chi) = \Delta(0) + \frac{\sin^4(i\pi\chi) - \left(\sin^2(\pi\theta_n^{(1)}) + \sin^2(\pi\theta_n^{(2)})\right)\sin^2(i\pi\chi)}{\sin^2(\pi\theta_n^{(1)})\sin^2(\pi\theta_n^{(2)})}$$
(13)
a t

$$\sin^{4}(i\pi\chi) - \left(\sin^{2}(\pi\theta_{n}^{(1)}) + \sin^{2}(\pi\theta_{n}^{(2)})\right)\sin^{2}(i\pi\chi) + \Delta(0)\sin^{2}(\pi\theta_{n}^{(1)})\sin^{2}(\pi\theta_{n}^{(2)}) = 0$$
(14)

[2].
$$\Delta(it) -$$

(5)

-

,

t o i. o ,
$$t_1$$
 t_2 -

$$(14)$$

$$(14)$$

$$(14)$$

$$(w_{n,0}^{(j)}, w_{n,1}^{(j)}, w_{n,-1}^{(j)}, ..., w_{n,m}^{(j)}, w_{n,-m}^{(j)}, ...), j = \overline{1,4}$$

$$(9) \quad t_{j}, j = \overline{1,4}, ...$$

$$(2) - (4) \quad (2), (3), (5)$$

$$u_{1} = \cos(k_{2}n\alpha) \sum_{j=1}^{4} A_{j} \exp(\chi_{j}k_{1}\beta) \sum_{m=-\infty}^{m=+\infty} u_{n,m}^{(j)} \exp(imk_{1}\beta)$$

$$u_{2} = \sin(k_{2}n\alpha) \sum_{j=1}^{4} A_{j} \exp(\chi_{j}k_{1}\beta) \sum_{m=-\infty}^{m=+\infty} v_{n,m}^{(j)} \exp(imk_{1}\beta)$$

$$(15)$$

$$u_{3} / R = k_{2} \sin(k_{2}n\alpha) \sum_{j=1}^{4} A_{j} \exp(\chi_{j}k_{1}\beta) \sum_{m=-\infty}^{m=+\infty} w_{n,m}^{(j)} \exp(imk_{1}\beta)$$

$$A_{j}, j = \overline{1,4}, ..., (4) \quad (5)$$

$$k_{2} \qquad , \qquad (15) \quad (3), \qquad a$$

$$\sum_{j=1}^{4} R_{1j} A_{j} = 0, \qquad \sum_{j=1}^{4} R_{1j} \exp(z_{j}) A_{j} = 0$$

$$\sum_{j=1}^{4} R_{2j} A_{j} = 0, \qquad \sum_{j=1}^{4} R_{2j} \exp(z_{j}) A_{j} = 0 \qquad (16)$$

$$R_{1j} = \sum_{m=-\infty}^{m=\infty} R_{1j}^{(n,m)} \omega_{n,m}^{(j)}, \qquad R_{2j} = \sum_{m=-\infty}^{m=\infty} R_{2j}^{(n,m)} \omega_{n,m}^{(j)}$$

$$R_{1j}^{(n,m)} = \left(q_m^{(j)}\right)^2 \eta^2 - (n^2 - \eta^2) \left(\frac{B_{11}B_{11} - B_{12}^2}{B_{22}B_{66}}n^2 - \eta^2\right), \qquad R_{2j}^{(n,m)} = i\chi_j - m \qquad (17)$$

$$\omega_{n,m}^{(j)} = w_{n,m}^{(j)} / c_{n,m}^{(j)}, \qquad q_m^{(j)} = \frac{k_1}{k_2}(i\chi_j - m), \qquad z_j = k_1\chi_j\beta_0, \qquad j = \overline{1,4}, \qquad m = 0, \pm 1, \pm 2, \dots$$

$$(16) , , , ee$$

$$\Delta(\mathbf{y}) , \qquad , \qquad$$

$$\Delta(\eta)\exp(z_1 + z_2) = (R_{11}R_{22} - R_{21}R_{12})(R_{13}R_{24} - R_{23}R_{14})(1 + \exp(2(z_1 + z_2))) - (2(R_{11}R_{23} - R_{21}R_{13})(R_{12}R_{24} - R_{22}R_{14})\exp(z_1 + z_2) + (18) + (R_{12}R_{23} - R_{22}R_{13})(R_{11}R_{24} - R_{21}R_{14})(\exp(2z_1) + \exp(2z_2)) = 0$$

•

$$\begin{array}{c} t_{1} \quad t_{2} \\ s_{0} \rightarrow \infty \end{array} , \\ R_{11}R_{22} - R_{21}R_{12} = \sum_{m=-\infty}^{m=+\infty} \sum_{\gamma=-\infty}^{\gamma=+\infty} A_{m,\gamma}(\chi_{1},\chi_{2})\omega_{n,\gamma}^{(1)}\omega_{n,m-\gamma}^{(2)} = 0 \\ R_{13}R_{24} - R_{23}R_{14} = \sum_{m=-\infty}^{m=+\infty} \sum_{\gamma=-\infty}^{\gamma=+\infty} A_{m,\gamma}(-\chi_{1},-\chi_{2})\omega_{n,\gamma}^{(3)}\omega_{n,m-\gamma}^{(4)} = 0 \\ A_{m,\gamma}(x,y) = ((m-2\gamma)i + y - x) \left[(n^{2} - \eta^{2}) \left(\frac{B_{11}B_{11} - B_{12}^{2}}{B_{22}B_{66}} n^{2} - \eta^{2} \right) - \\ - \left(\frac{k_{1}}{k_{2}} \right)^{2} \eta^{2}(\gamma i + x)((m-\gamma)i + y) \right]$$
(19)

$$(k_2 = 2\pi n_0 / l, l -)$$

-

 $(_{2} = f / l, l - l)$

, (9).
,
$$R^{-2}(S) = k_2^2 R_0$$
, $R_m = 0$, $m = \pm 1, \pm 2, \dots$.

$$(_{2} = 2fn_{0}/l, l-)$$

, - (
 $_{2} = f/l, l-$
) [3-4]. -

,

s,
$$-R$$
.
(9)
 $R_{n,m}\omega_{n,m} = 0, \quad \omega_{n,m} = w_{n,m} / c_{n,m}, \quad m = 0, \pm 1, 2, ...$
(20)
t - (14)

$$\chi_{1} = -i(\theta_{1} + m), \chi_{2} = -i(\theta_{2} + m), \chi_{3} = i(\theta_{1} + m)$$

$$\chi_{2} = i(\theta_{1} + m), m = 0, \pm 1, \pm 2, \dots$$
(18)
(21)

$$(\chi_{2} - \chi_{1})^{2} K_{2m}^{2} (\eta_{m}^{2}) (1 + \exp(2(z_{1} + z_{2}))) - \\ -8R_{11}^{(n,m)} R_{22}^{(n,m)} R_{12}^{(n,m)} R_{21}^{(n,m)} \exp(z_{1} + z_{2}) + \\ + (i\chi_{2} + i\chi_{1} - 2m)^{2} K_{3m}^{2} (\eta_{m}^{2}) (\exp(2z_{1}) + \exp(2z_{2})) = 0 \\ m = 0, \pm 1, \pm 2, \dots$$
(22)

$$K_{\alpha m}(\eta^{2}) = (n^{2} - \eta^{2}) \left(\frac{B_{11}B_{11} - B_{12}^{2}}{B_{22}B_{66}} n^{2} - \eta^{2} \right) + + (-1)^{\alpha} \left(\frac{k_{1}}{k_{2}} \right)^{2} \eta^{2} (i\chi_{1} - m)(i\chi_{2} - m), \alpha = 2,3$$
$$R_{1j}^{(n,m)} = \left(\frac{k_{1}}{k_{2}} \right)^{2} \eta^{2} (i\chi_{j} - m)^{2} - (n^{2} - \eta^{2}) \left(\frac{B_{11}B_{11} - B_{12}^{2}}{B_{22}B_{66}} n^{2} - \eta^{2} \right)$$
$$R_{2j}^{(n,m)} = i\chi_{j} - m, z_{j} = \chi_{j}k_{1}\beta_{0}$$
(23)

$$K_{2m}^{2} \left(\eta_{m}^{2}\right) (1 + \exp(2(z_{1} + z_{2}))) - 8m_{11}m_{12}m_{22}m_{21}\exp(z_{1} + z_{2}) + (24) + (m_{11}m_{22} + m_{12}m_{21})^{2} (\exp(2z_{1}) + \exp(2z_{2})) + 4m_{11}m_{21}(m_{11}m_{22} + m_{12}m_{21})[z_{1}z_{2}](\exp(z_{2}) - \exp(z_{1})) + 4m_{11}^{2}m_{21}^{2}[z_{1}z_{2}]^{2} = 0, \quad m = 0, \pm 1, \pm 2, ... K_{2m}\left(y_{m}^{2}\right)$$
(23),
$$m_{11} = \left(\frac{k_{1}}{k_{2}}\right)^{2} \eta^{2}(i\chi_{j} - m)^{2} - (n^{2} - \eta^{2})\left(\frac{B_{11}B_{11} - B_{12}^{2}}{B_{22}B_{66}}n^{2} - \eta^{2}\right) m_{21} = i\chi_{j} - m, m_{22} = i$$
(25)
$$[z_{1}z_{2}] = (\exp(z_{2}) - \exp(z_{1}))/(z_{2} - z_{1})k_{1}\beta_{0}, \quad m = 0, \pm 1, \pm 2, ... (24) , \qquad , \qquad s_{0} \to \infty$$
(22) (24)

(24) ,
$$t_1 \quad t_2$$

, $s_0 \rightarrow \infty$ (22) (24)

$$K_{2m}(\eta^2) = (n^2 - \eta^2) \left(\frac{B_{11}B_{11} - B_{12}^2}{B_{22}B_{66}} n^2 - \eta^2 \right) + \left(\frac{k_1}{k_2} \right)^2 \eta^2 (i\chi_1 - m)(i\chi_2 - m) = 0$$
(26)
$$m = 0, \pm 1, \pm 2, \dots$$

$$(k_2 = 2\pi n_0/l)$$
,
, $(k_2 = \pi/l)$.
) $R^{-2}(\beta) = k_2^2 R_0 = 0$, ... -

$$(R_{0} \rightarrow 0) \qquad R_{n,m}(t) = 0, m = 0, \pm 1, \pm 2, \dots$$

$$c_{n,m}(\chi) = \frac{B_{22}}{B_{11}} q_{m}^{4} + \left[\frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}} n^{2} - \frac{B_{22} + B_{66}}{B_{11}} \eta^{2}\right] q_{m}^{2} + (n^{2} - \eta^{2}) \left(n^{2} - \frac{B_{66}}{B_{11}} \eta^{2}\right) = 0 \quad (27)$$

$$m = 0, \pm 1, \pm 2, \dots$$

1. . . // . . . 2007. 1. . 84-99. 2. . .:, 1953. 346 . 3. . .,- 2006.-// . 42.- 12.- . 97-114. 4. . , . . -// :// . .:/ . . . -. 2007. . 69. .143-158. 5. . , . ., . . . 463-475.

. 403-473.

. .- . ., . . .

:

.: (+37410) 649121, (+37491) 706700 E-mail: <u>ghulgr@yahoo.com</u>

. .- . .,: (+37410) 649121, (+37491) 759147 E-mail: <u>ghulr@yahoo.com</u>

1.

$$-h_2 \le X \le h_1$$
, $\Omega_0 = \{r, s, x; r, s \in \Omega_0, .$
 $, s - , s - , x - , .$

,

• •

•

[1,2].

:

$$\begin{split} &\frac{1}{AB}\frac{\partial}{\partial \Gamma} \left(B^{\ddagger}_{\Gamma\Gamma}^{(j)}\right) - k_{s}^{\ddagger}_{SS}^{(j)} + \frac{1}{AB}\frac{\partial}{\partial S} \left(A^{\ddagger}_{S\Gamma}^{(j)}\right) + k_{r}^{\ddagger}_{\GammaS}^{(j)} + \left(1 + \frac{x}{R_{1}}\right) \frac{\partial^{\ddagger}_{\GammaE}^{(j)}}{\partial x} + \\ &+ \frac{2^{\ddagger}_{\Gamma_{x}}^{(j)}}{R_{1}} = \dots^{(j)} \left(1 + \frac{x}{R_{1}}\right) \left(1 + \frac{x}{R_{2}}\right) \frac{\partial^{2}U^{(j)}}{\partial t^{2}}, \\ &(A \leftrightarrow B; \ \Gamma \leftrightarrow S; \ R_{1}, R_{2}; \ U, V), \ j = I, II \\ &\frac{\partial^{\ddagger}_{xx}}{\partial x} - \left(\frac{\ddagger_{\Gamma\Gamma}^{(j)}}{R_{1}} + \frac{\ddagger_{SS}^{(j)}}{R_{2}}\right) + \frac{1}{A} \frac{\partial^{\ddagger}_{\Gamma_{x}}^{(j)}}{\partial r} + \\ &+ \frac{1}{B} \frac{\partial^{\ddagger}_{Sx}}{\partial S} + k_{s}^{\ddagger}_{\Gamma_{x}}^{(j)} + k_{r}^{\ddagger}_{Sx}^{(j)} = \dots^{(j)} \left(1 + \frac{x}{R_{1}}\right) \left(1 + \frac{x}{R_{2}}\right) \frac{\partial^{2}W^{(j)}}{\partial t^{2}} \\ &\left(1 + \frac{x}{R_{1}}\right)^{\ddagger}_{\Gamma_{S}}^{(j)} = \left(1 + \frac{x}{R_{2}}\right)^{\ddagger}_{S\Gamma}^{(j)} (1 + \frac{W^{(j)}}{R_{1}}\right) = \\ &= \left(1 + \frac{x}{R_{1}}\right) a_{11}^{(j)}^{(j)}_{\Gamma_{r}}^{(j)} + \left(1 + \frac{x}{R_{2}}\right) a_{12}^{(j)}_{T_{SS}}^{(j)} + a_{13}^{(j)}_{T_{SS}}^{(j)} (1 + \frac{x}{R_{2}}) a_{13}^{(j)}_{T_{SS}}^{(j)} \\ &(A, B; \ \Gamma \leftrightarrow S; \ R_{1} \leftrightarrow R_{2}; \ U \leftrightarrow V; \ a_{11}, a_{22}; \ a_{13}, a_{23}) \end{split}$$

$$\begin{bmatrix} 1+x\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{x^{2}}{R_{1}R_{2}}\end{bmatrix}\frac{\partial W^{(j)}}{\partial x} =$$

$$=\left(1+\frac{x}{R_{1}}\right)a_{13}^{(j)}\dagger_{rr}^{(j)}+\left(1+\frac{x}{R_{2}}\right)a_{23}^{(j)}\dagger_{ss}^{(j)}+a_{33}^{(j)}\dagger_{xs}^{(j)}$$

$$\left(1+\frac{x}{R_{1}}\right)\left(\frac{1}{B}\frac{\partial U^{(j)}}{\partial s}-k_{s}V^{(j)}\right)+\left(1+\frac{x}{R_{2}}\right)\left(\frac{1}{A}\frac{\partial V^{(j)}}{\partial r}-k_{r}U^{(j)}\right)=$$

$$=\left(1+\frac{x}{R_{1}}\right)a_{66}^{(j)}\dagger_{rs}^{(j)}$$

$$\left[1+x\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{x^{2}}{R_{1}R_{2}}\right]\frac{\partial U^{(j)}}{\partial x}-\left(1+\frac{x}{R_{2}}\right)\frac{U^{(j)}}{R_{1}}+\frac{1}{A}\left(1+\frac{x}{R_{2}}\right)\frac{\partial W^{(j)}}{\partial r}=$$

$$=\left(1+\frac{x}{R_{1}}\right)a_{55}^{(j)}\dagger_{rx}^{(j)}, \quad (A,B; r,s; R_{1}\leftrightarrow R_{2}; U,V; a_{55}, a_{44})$$

$$k_{r},k_{s}-, , A,B-,$$

$$\dots^{(j)}-, , a_{ik}^{(j)}-, (a_{ik}^{(j)}=a_{ki}^{(j)}), j-$$

$$X = h_{1} \qquad :$$

$$\ddagger_{r_{X}}^{I}(h_{1}) = 0, \ \ddagger_{s_{X}}^{I}(h_{1}) = 0, \ \ddagger_{x_{X}}^{I}(h_{1}) = 0 \qquad (1.3)$$

$$X = -h_{2} - U^{II}(-h_{2}) = 0, \ V^{II}(-h_{2}) = 0, \ W^{II}(-h_{2}) = 0 \qquad (1.4)$$

$$\ddagger_{rx}^{I}(\mathsf{X}=0) = \ddagger_{rx}^{II}(\mathsf{X}=0), \ \ \ddagger_{sx}^{I}(\mathsf{X}=0) = \ddagger_{sx}^{II}(\mathsf{X}=0), \ \ \ddagger_{xx}^{I}(\mathsf{X}=0) = \ddagger_{xx}^{II}(\mathsf{X}=0)$$
(1.5)

$$U^{I}(\mathbf{x}=0) = U^{II}(\mathbf{x}=0), \quad V^{I}(\mathbf{x}=0) = V^{II}(\mathbf{x}=0), \quad W^{I}(\mathbf{x}=0) = W^{II}(\mathbf{x}=0)$$
(1.6)

2.

$$r = R < ,$$

 $s = Ry, \quad x = vR' = h', \quad U = Ru, \quad V = Rv, \quad W = Rw, \quad h = \max\{h_1, h_2\},$

 $\tilde{S}_*^2 = h^2 \tilde{S}^2, \quad v = h/R - .$

•

:

$$Q_{\Gamma S}^{(j)} = Q_{mk}^{(j)}(\langle, y, ' \rangle)e^{iSt} \quad (\Gamma, S, \chi); m, k = 1, 2, 3; \quad j = I, II$$

$$Q_{\Gamma S}^{(j)} - , S -$$
(2.1)

$$Q^{(j)}_{mk}$$
 ,

$$\begin{aligned} & \left(\begin{array}{c} t_{mk}^{(j)}(<,\mathbf{y},') = \mathsf{V}^{-1+s} \ddagger_{mk}^{(j,s)}(<,\mathbf{y},'), & m,k = 1,2,3; & s = \overline{\mathbf{0},N}, & j = I,II \\ & \left(u^{(j)}(<,\mathbf{y},'), \mathsf{v}^{(j)}(<,\mathbf{y},'), w^{(j)}(<,\mathbf{y},') \right) = & (2.2) \\ & = \mathsf{V}^{s} \left(u^{(j,s)}(<,\mathbf{y},'), \mathsf{v}^{(j,s)}(<,\mathbf{y},'), w^{(j,s)}(<,\mathbf{y},') \right), & \check{\mathsf{S}}_{*}^{2} = \mathsf{V}^{s} \check{\mathsf{S}}_{*_{s}}^{2}, \\ & s = \overline{\mathbf{0},N} & , & (& - \\ &) & s & 0,N \\ & (2.2) & , & , & [1,2], \\ & & & \end{array} \end{aligned}$$

V

 $Q^{(j,s)}_{\scriptscriptstyle mk}$ $\ddagger_{12}^{(j,s)} = P_{1\ddagger}^{(j,s-1)}, \ddagger_{21}^{(j,s)} = P_{1\ddagger}^{(j,s-1)} - r_2' \ddagger_{21}^{(j,s-1)} + r_1' \ddagger_{12}^{(j,s-1)}$ $\sum_{1}^{(j,s)} = P_{2\ddagger}^{(j,s-1)}, \sum_{2}^{(j,s)} = P_{3\ddagger}^{(j,s-1)}$ $\frac{\partial \ddagger_{13}^{(j,s)}}{\partial'} + \check{S}_{*m}^2 \dots^{(j)} u^{(j,s-m)} = P_{6\ddagger}^{(j,s-1)}, \quad m = \overline{0,s}$ (2.3)(13,23,33; *u*, v, *w*; 6[‡],5[‡],4[‡]) $\frac{\partial u^{(j,s)}}{\partial'} - a^{(j)}_{55} \ddagger^{(j,s)}_{13} = P^{(j,s-1)}_u, \quad \frac{\partial v^{(j,s)}}{\partial'} - a^{(j)}_{44} \ddagger^{(j,s)}_{23} = P^{(j,s-1)}_v$ $\frac{\partial w^{(j,s)}}{\partial'} - \sum_{3}^{(j,s)} = P_{w}^{(j,s-1)}$

$$\begin{split} P_{1\sharp}^{(j,s-1)} &= \frac{1}{a_{66}} \Biggl[\frac{1}{B} \frac{\partial u^{(j,s-1)}}{\partial y} - k_{s} R v^{(j,s-1)} + r_{1}' \left(\frac{1}{B} \frac{\partial u^{(j,s-2)}}{\partial y} - k_{s} R v^{(j,s-2)} \right) + \\ &+ \frac{1}{A} \frac{\partial v^{(j,s-1)}}{\partial \varsigma} - k_{r} R u^{(j,s-1)} + r_{2}' \left(\frac{1}{A} \frac{\partial v^{(j,s-2)}}{\partial \varsigma} - k_{r} R u^{(j,s-2)} \right) - r_{1}' a_{66}^{(j)} \ddagger_{12}^{(j,s-1)} \Biggr] \\ P_{2\sharp}^{(j,s-1)} &= \frac{1}{A} \frac{\partial u^{(j,s-1)}}{\partial \varsigma} + k_{r} R v^{(j,s-1)} + r_{1} w^{(j,s-1)} - r_{1}' a_{11}^{(j)} \ddagger_{11}^{(j,s-1)} + e_{1} e_{1}$$

$$+ r_{2}' \left(\frac{1}{A} \frac{\partial u^{(j,s-2)}}{\partial \varsigma} + k_{\Gamma} R \mathbf{v}^{(j,s-2)} + r_{1} w^{(j,s-2)} \right) - r_{2}' a_{12}^{(j)} \ddagger_{22}^{(j,s-1)}$$
(2.4)

$$(2\ddagger,3\ddagger; A,B; \Gamma,S; r_{1} \leftrightarrow r_{2}; \langle,Y; u \leftrightarrow v; \ddagger_{11} \leftrightarrow \ddagger_{22}; a_{11}, a_{22})$$

$$P_{4\ddagger}^{(j,s-1)} = r_{1}\ddagger_{11}^{(j,s-1)} + r_{2}\ddagger_{22}^{(j,s-1)} - \frac{1}{A} \frac{\partial \ddagger_{13}^{(j,s-1)}}{\partial \langle} - \frac{1}{B} \frac{\partial \ddagger_{23}^{(j,s-1)}}{\partial y} - k_{S}R\ddagger_{13}^{(j,s-1)} - k_{S}R\ddagger_{13}^{(j,s-1)} - k_{S}R\ddagger_{13}^{(j,s-1)} - k_{S}R\ddagger_{23}^{(j,s-1)} - \dots^{(j)}(r_{1}+r_{2})' \check{S}_{*n}^{2}w^{(j,s-1-n)} - \dots^{(j)}r_{1}r_{2}' \, {}^{2}\check{S}_{*q}^{2}w^{(j,s-2-q)}$$

$$P_{\text{S}^{\pm}}^{(j,s-1)} = -\frac{1}{AB} \frac{\partial}{\partial y} \left(A^{\ddagger}_{22}^{(j,s-1)} \right) + k_{\text{r}} R^{\ddagger}_{11}^{(j,s-1)} - \frac{1}{AB} \frac{\partial}{\partial \varsigma} \left(B^{\ddagger}_{12}^{(j,s-1)} \right) - k_{\text{s}} R^{\ddagger}_{21}^{(j,s-1)} - r_{2}^{\prime} \frac{\partial^{\ddagger}_{23}^{(j,s-1)}}{\partial \prime} - 2r_{2}^{\ddagger}_{23}^{(j,s-1)} - (r_{1} + r_{2})^{\prime} \dots^{(j)} \tilde{S}_{*n}^{2} v^{(j,s-1-n)} - \dots^{(j)} r_{1} r_{2}^{\prime} \tilde{S}_{*q}^{2} v^{(j,s-2-q)}$$

$$(51,61;A \leftrightarrow B; \Gamma \leftrightarrow S; r_{2},r_{1};v,u; \langle \leftrightarrow Y; t_{11} \leftrightarrow t_{22}; t_{12} \leftrightarrow t_{21}; t_{23},t_{13})$$

$$P_{u}^{(j,s-1)} = -i (r_{1} + r_{2}) \frac{\partial u^{(j,s-1)}}{\partial i} - i^{2}r_{1}r_{2} \frac{\partial u^{(j,s-2)}}{\partial i} + r_{1}u^{(j,s-1)} + ir_{1}r_{2}u^{(j,s-2)} - \frac{1}{A} \frac{\partial w^{(j,s-1)}}{\partial \zeta} - \frac{r_{2}i}{A} \frac{\partial w^{(j,s-2)}}{\partial \zeta} + r_{1}i^{3}a_{55}^{(j)}t_{13}^{(j,s-1)}$$

 $(u, v; A, B; r_1 \leftrightarrow r_2; \langle , y; \ddagger_{13}, \ddagger_{23}; a_{55}, a_{44})$ $P_w^{(j,s-1)} = -i (r_1 + r_2) \frac{\partial w^{(j,s-1)}}{\partial i} - i^{-2} r_1 r_2 \frac{\partial w^{(j,s-2)}}{\partial i} + r_1^{-i} a_{13}^{(j)} \ddagger_{11}^{(j,s-1)} + r_2^{-i} a_{23}^{(j)} \ddagger_{22}^{(j,s-1)}, n = \overline{0, s-1}; q = \overline{0, s-2}$ $r_1 = \frac{R}{R_1}, r_2 = \frac{R}{R_2}, \sum_{i}^{(j,s)} = a_{i1}^{(j)} \ddagger_{11}^{(j,s)} + a_{i2}^{(j)} \ddagger_{22}^{(j,s)} + a_{i3}^{(j)} \ddagger_{33}^{(j,s)}$

$$(2.3), \qquad (2.3), \qquad (2.5)$$

$$\downarrow_{13}^{(j,s)} = \frac{1}{a_{55}^{(j)}} \left[\frac{\partial u^{(j,s)}}{\partial'} - P_{u}^{(j,s-1)} \right], \qquad \downarrow_{23}^{(j,s)} = \frac{1}{a_{44}^{(j)}} \left[\frac{\partial v^{(j,s)}}{\partial'} - P_{v}^{(j,s-1)} \right] \qquad (2.5)$$

$$\downarrow_{12}^{(j,s)} = P_{1\ddagger}^{(j,s-1)}, \qquad \downarrow_{21}^{(s)} = P_{1\ddagger}^{(j,s-1)} - r_{2} + \downarrow_{21}^{(j,s-1)} + r_{1} + \downarrow_{12}^{(j,s-1)} \qquad (2.5)$$

$$\downarrow_{11}^{(j,s)} = \frac{1}{\Delta^{(j)}} \left[\Delta_{2}^{(j)} \frac{\partial w^{(j,s)}}{\partial'} + \Delta_{23}^{(j)} P_{2\ddagger}^{(j,s-1)} + \Delta_{1}^{(j)} P_{3\ddagger}^{(j,s-1)} - \Delta_{2}^{(j)} P_{w}^{(j,s-1)} \right] \qquad (11,22,33; \quad \Delta_{2}, \Delta_{3}, \Delta_{12}; \quad \Delta_{23}, \Delta_{1}, \Delta_{2}; \quad \Delta_{1}, \Delta_{13}, \Delta_{3})$$

$$\begin{split} \Delta_{1}^{(j)} &= a_{13}^{(j)} a_{23}^{(j)} - a_{33}^{(j)} a_{12}^{(j)}, \ \Delta_{2}^{(j)} &= a_{12}^{(j)} a_{23}^{(j)} - a_{22}^{(j)} a_{13}^{(j)} \end{split} \tag{2.6} \\ \Delta_{3}^{(j)} &= a_{13}^{(j)} a_{12}^{(j)} - a_{11}^{(j)} a_{23}^{(j)}, \ \Delta_{2}^{(j)} &= a_{11}^{(j)} \Delta_{23}^{(j)} + a_{13}^{(j)} \Delta_{2}^{(j)} + a_{12}^{(j)} \Delta_{1}^{(j)} \\ \Delta_{ik}^{(j)} &= a_{ii}^{(j)} a_{kk}^{(j)} - (a_{ik}^{(j)})^{2}, \quad i,k = 1,2,3; \end{split}$$

а

$$\begin{aligned} \frac{\partial^2 u^{(j,s)}}{\partial'^2} + a^{(j)}_{55} \tilde{S}^2_{*m} \dots^{(j)} u^{(j,s-m)} &= a^{(j)}_{55} P^{(j,s-1)}_{64} + \frac{\partial P^{(j,s-1)}_{u}}{\partial'} \\ n &= \overline{0,s} , (u,v; a_{55}, a_{44}; 6^{\ddagger}, 5^{\ddagger}) \\ \frac{\partial^2 w^{(j,s)}}{\partial'^2} + \frac{\Delta^{(j)}_{12}}{\Delta^{(j)}_{12}} \tilde{S}^2_{*m} \dots^{(j)} w^{(j,s-m)} &= F^{(j,s-1)}_w \\ F^{(j,s-1)}_w &= \frac{1}{\Delta^{(j)}_{12}} \left[\Delta^{(j)} P^{(j,s-1)}_{4^{\ddagger}} - \Delta^{(j)}_2 \frac{\partial P^{(j,s-1)}_{2^{\ddagger}}}{\partial'} - \Delta^{(j)}_3 \frac{\partial P^{(j,s-1)}_{3^{\ddagger}}}{\partial'} + \Delta^{(j)}_{12} \frac{\partial P^{(j,s-1)}_w}{\partial'} \right] \\ , \qquad (1.3)-(1.6), \\ , \qquad & \ddagger^{(j,s)}_{mk}, u^{(j,s)}, \end{aligned}$$

$$(u, v, w)$$
 (1.3), (1.4),
 $' = '_1:$

$$\begin{array}{cccc}
\ddagger_{13}^{(I,s)}(' &= '_{1}) = -\ddagger_{13b}^{(I,s)}(' &= '_{1}) & (13,23,33) \\
& & ' &= -'_{2}
\end{array}$$
(2.8)

$$u^{(II,s)}(' = -'_{2}) = -u_{b}^{-(II,s)}(' = -'_{2}) \quad (u, v, w)$$

$$f_{13b}^{-(I,0)} = 0, \quad (13,23,33), \quad u^{-(II,0)} = 0, \quad (u, v, w).$$
(2.9)

 $\mathbf{T}_{mkb}^{(I,s)}$,

,

$$u^{(j,0)}(\langle,y,'\rangle) = C_1^{(j,0)}(\langle,y\rangle) \sin \sqrt{a_{55}^{(j)} \dots^{(j)}} \tilde{S}_{*0}' + C_2^{(j,0)}(\langle,y\rangle) \cos \sqrt{a_{55}^{(j)} \dots^{(j)}} \tilde{S}_{*0}'$$

$$(u, v, w; 1,3,5; 2,4,6; a_{55}, a_{44}, \Delta/\Delta_{12})$$

$$(2.11) \qquad (2.11) \qquad (2.5) \qquad (1.5), (1.6), (2.8) \qquad (2.9), \qquad (2.9), \qquad (2.9), \qquad (2.9)$$

 $C_i^{(j,0)}$.

$$D_{u}(\tilde{S}_{*0}) = A_{u}^{-}\cos(\tilde{S}_{*0}B_{u}^{-}) - A_{u}^{+}\cos(\tilde{S}_{*0}B_{u}^{+}) = 0 \quad (u, v, w)$$
(2.12)

:

,

$$A_{u}^{\pm} = \sqrt{\frac{\prod_{i=1}^{n} a_{55}^{ll}}{\prod_{i=1}^{n} a_{55}^{l}}} \pm 1 \qquad (u, v, w; \ a_{55}^{(j)}, a_{44}^{(j)}, \Delta^{(j)} / \Delta_{12}^{(j)})$$

$$B_{u}^{\pm} = \sqrt{a_{55}^{ll}, \prod_{i=2}^{ll}} \pm \sqrt{a_{55}^{l}, \prod_{i=1}^{l}} (u, v, w; \ a_{55}^{(j)}, a_{44}^{(j)}, \Delta^{(j)} / \Delta_{12}^{(j)})$$

$$\tilde{S}_{*n}^{u} \quad \tilde{S}_{*n}^{v}$$

$$, \qquad \tilde{S}_{*n}^{w} -$$

$$s \ge 1$$

$$\tilde{S}_{*0n}^{u}, \tilde{S}_{*0n}^{v}, \tilde{S}_{*0n}^{w}$$

$$(2.13)$$

$$\tilde{\mathsf{S}}^{u}_{*0n}, \tilde{\mathsf{S}}^{v}_{*0n}, \tilde{\mathsf{S}}^{w}_{*0n}$$
(2.7).

 $s \ge 1$

(2.7) $\check{\mathsf{S}}_{*0}=\check{\mathsf{S}}_{*0n}^{u},$ s = 1. (2.5), (1.5), (1.6), (2.8), (2.9)

$$(2.11) \ddagger_{sx}, \ddagger_{xx}, V, W$$

3.

,

.

$$\mathbf{v}_{nu}^{(j,0)} = w_{nu}^{(j,0)} = 0, \ \mathbf{\ddagger}_{23u}^{(j,0)} = \mathbf{\ddagger}_{33u}^{(j,0)} = \mathbf{\ddagger}_{12u}^{(j,0)} = \mathbf{\ddagger}_{21u}^{(j,0)} = \mathbf{\ddagger}_{11u}^{(j,0)} = \mathbf{\ddagger}_{22u}^{(j,0)} = \mathbf{0}$$
(3.1)

,
$$\check{S}_{*0} = \check{S}_{*0n}^{u}$$
 (2.10).

$$\frac{\partial^2 u_{nu}^{(j,1)}}{\partial^{\prime}} + a_{55}^{(j)} (\check{\mathsf{S}}_{*0n}^u)^2 \dots^{(j)} u_{nu}^{(j,1)} + a_{55}^{(j)} (\check{\mathsf{S}}_{*1n}^u)^2 \dots^{(j)} u_{nu}^{(j,0)} = F_{uu}^{(j,0)}$$
(3.2)

$$\frac{\partial^2 \mathbf{v}_{nu}^{(j,1)}}{\partial'^2} + a_{44}^{(j)} (\check{\mathbf{S}}_{*0n}^u)^2 \dots {}^{(j)} \mathbf{v}_{nu}^{(j,1)} = 0$$
(3.3)

$$\frac{\partial^2 w_{nu}^{(j,1)}}{\partial'^2} + \frac{\Delta^{(j)}}{\Delta^{(j)}_{12}} (\check{\mathsf{S}}^u_{*0n})^2 \dots^{(j)} w_{nu}^{(j,1)} = F_{wu}^{(j,0)}$$
(3.4)

$$F_{uu}^{(j,0)} = -(r_1 + r_2) \frac{\partial u_{nu}^{(j,0)}}{\partial'}$$

$$F_{wu}^{(j,0)} = \frac{1}{\Delta_{12}^{(j)}} \left[\Delta^{(j)} P_{4tu}^{(j,0)} - \Delta_2^{(j)} \frac{\partial P_{2tu}^{(j,0)}}{\partial'} - \Delta_3^{(j)} \frac{\partial P_{3tu}^{(j,0)}}{\partial'} + \Delta_{12}^{(j)} \frac{\partial P_{wu}^{(j,0)}}{\partial'} \right]$$
(3.5)
(3.5)
(3.5)
(3.5)

$$(2.8), (2.9) \qquad (2.9)$$

$$C_{5nu}^{(j,1)} C_{6nu}^{(j,1)} .$$

$$u_{n}^{(j,0)} ,$$

$$\int \dots \int [-t_{2}, t_{1}] [4] .$$

$$u_{nu}^{(j,1)} (\langle , \mathbf{y}, t_{1} \rangle) = \sum b_{nm}^{(j)} (\langle , \mathbf{y} \rangle) u_{mu}^{(j,0)} (t_{1} \rangle) + u^{j*}(t_{1} \rangle), \quad j = I, II \qquad (3.8)$$

$$u^{1*}(t_{1} \rangle) = \frac{-a_{55}^{I} \overline{f}_{13b}^{(J)}(t_{1} = t_{1})}{2t_{1}} t_{1}^{2} , \quad u^{2*}(t_{1} \rangle) = \frac{-u_{b}^{(II,1)}(t_{1} = -t_{2})}{2} t_{2}^{2}$$

$$0 \quad \infty .$$

$$(2.8), (2.9) \qquad ,$$

$$(1.5), (1.6) \qquad ,$$

$$b_{nm}^{I} = b_{nm}^{II} = b_{nm} \qquad (3.9)$$

$$(3.8) \qquad (3.2). \qquad j = I$$

$$u_{ku}^{(I,0)} \qquad t_{ku} \qquad [0, t_{1}], \qquad j = II$$

$$u_{ku}^{(I,0)} \qquad t_{ku} \qquad [-t_{2},0].$$

$$b_{nk} ((\tilde{S}_{*0n}^{u})^{2} - (\tilde{S}_{*0k}^{u})^{2}) \int_{-\frac{1}{2}}^{1} \mathbb{E}_{k} \mathbb{E}_{k} d' + (\tilde{S}_{*1n}^{u})^{2} \int_{-\frac{1}{2}}^{1} \mathbb{E}_{n} \mathbb{E}_{k} d' = = \frac{1}{a_{55}^{l}} \int_{0}^{1} Q_{1} u_{ku}^{(l,0)} d' + \frac{1}{a_{55}^{ll}} \int_{-\frac{1}{2}}^{0} Q_{2} u_{ku}^{(ll,0)} d'$$
(3.10)

$$\mathbb{E}_{n} = \begin{cases} \sqrt{\dots^{I}} U_{n}^{(I,0)}, & 0 \leq \prime \leq \prime_{1} \\ \sqrt{\dots^{II}} U_{n}^{(II,0)}, & -\prime_{2} \leq \prime \leq 0 \end{cases}$$

$$Q_{1} = F_{uu}^{(I,0)} - \frac{\partial^{2} u^{1*}}{\partial \prime^{2}} - a_{55}^{I} (\tilde{S}_{*0n}^{u})^{2} \dots^{I} u^{1*}$$

$$Q_{2} = F_{uu}^{(II,0)} - \frac{\partial^{2} u^{2*}}{\partial \prime^{2}} - a_{55}^{I} (\tilde{S}_{*0n}^{u})^{2} \dots^{II} u^{2*}$$
(3.11)

$$k \neq n$$
, (3.10) b_{nk} :

$$b_{nk} = \frac{\frac{1}{a_{55}^{I}} \int_{0}^{1} Q_{1} u_{ku}^{(I,0)} d' + \frac{1}{a_{55}^{II}} \int_{-\frac{1}{2}}^{0} Q_{2} u_{ku}^{(II,0)} d'}{\left((\tilde{S}_{*0n}^{u})^{2} - (\tilde{S}_{*0k}^{u})^{2} \right) ||\mathbb{E}_{k}||}$$
(3.12)

$$k = n$$

•

,

, . .

$$\mathbb{E}_{n}^{(s)} = \begin{cases} \sqrt{\dots}^{I} U_{n}^{(I,s)}, & 0 \leq \prime \leq \prime \\ \sqrt{\dots}^{II} U_{n}^{(II,s)}, & -\prime \\ 2 \leq \prime \leq 0 \end{cases}$$
(3.14)

$$\|\mathbb{E}_{n}^{(0)}\| = \|\mathbb{E}_{n}\| = \int_{-\frac{1}{2}}^{\infty} \mathbb{E}_{n}\mathbb{E}_{n}d'$$

$$\Phi_{n} = \mathbb{E}_{n}^{(0)} + \nu\mathbb{E}_{n}^{(1)} + \cdots$$

$$, \qquad [5,6]$$

$$\|\mathbb{E}_{n}^{(0)}\|^{-1} \int_{-\frac{1}{2}}^{1} (\mathbb{E}_{n}^{(0)} + \nu\mathbb{E}_{n}^{(1)})^{2}d' = 1$$

$$(3.15)$$

$$b_{nn} = -\frac{\int_{0}^{I} \int_{0}^{I} u^{1*} u_{nu}^{(I,0)} d' + \dots \int_{-\frac{I}{2}}^{0} u^{2*} u_{nu}^{(II,0)} d'}{\|\mathbb{E}_{n}\|}$$
(3.16)

$$\check{\mathbf{S}}_{*_n} = \check{\mathbf{S}}_{*_n}^{\mathsf{v}} \qquad \check{\mathbf{S}}_{*_n} = \check{\mathbf{S}}_{*_n}^{\mathsf{w}} \qquad -$$

,

(2.12), s = 0

.

[4],

s = 1.

 V^2 .

 $s \ge 2$.

1. , 1976. . .: . . 512 . 2.: , 1997. 414 . 3. . ., . . -. . 2006. .70. . 1. .111-125. // 4. . . . // . . . 2005. .58. 4. . 33-44. 5. Nayfeh A. Perturbation Methods. N.Y. etc.: Wiley, 1973 = . . .: , 1976. 455 . 6. .: . . . , 1981. 398 .

. .- . .,

___:

$$A_{i,j}^{(1)}(\overline{U},\overline{x})\frac{\partial U_{j}}{\partial x} + A_{i,j}^{(2)}(\overline{U},\overline{x})\frac{\partial U_{j}}{\partial y} + A_{i,j}^{(3)}(\overline{U},\overline{x})\frac{\partial U_{j}}{\partial z} + B_{i}(\overline{U},\overline{x}) = 0$$

$$i, j = 1, 2...m, \ \overline{x} = \{x, y, z\} - \overline{U} = U_{j} - y, \qquad (1.1)$$

$$U_{j} = V(x), \qquad , \qquad ,$$

•

,

•

-

,

$$U_j = V_j + u_j, \qquad u_j, \mathsf{X} \qquad , \qquad \mathsf{X} \qquad .$$

.

,

(1.1)
$$X$$
, [1]

$$a_{i,j}^{(k)} \frac{\partial u_j}{\partial x_k} + t_{i,e} u_e = -\frac{\partial A_{i,j}^{(k)}}{\partial V_e} u_e \frac{\partial u_j}{\partial x_k}$$
(1.2)

$$a_{i,j}^{(k)} = A_{i,j}^{(k)}(\overline{V}\ \overline{x}), \quad t_{i,e} = \frac{\partial A_{i,j}^{(k)}}{\partial V_e} \frac{\partial V_j}{\partial x_k} + \frac{\partial B_i}{\partial V_e}$$

$$\begin{aligned} & \ddagger (x, y, z) = 0 & & \\ & (1.2) & & u \\ & X , & u \frac{\partial u}{\partial \ddagger} \sim u . & (1.2) & & x_k \end{aligned}$$

,

•

$$\frac{\partial u}{\partial \ddagger} \sim 1,$$

$$a_{i,j}^{(k)} u_j \frac{\partial t}{\partial x_k} = 0 \tag{1.3}$$

 u_j

$$\Delta = \det a_{i,j}^{(k)} \frac{\partial \ddagger}{\partial x_k} = 0 \tag{1.4}$$

τ

 u_i

(1.2)

Х,

, u_i .

 $u_{i} = u, \qquad u -$ (1.2) $a_{i,j}^{(1)} \frac{\partial u_{j}}{\partial x} + a_{i,j}^{(2)} \frac{\partial u_{j}}{\partial y} + a_{i,j}^{(3)} \frac{\partial u_{j}}{\partial z} = K_{i} u \frac{\partial u}{\partial \ddagger} - T_{i} u$ (1.5) $\Im f$

(1.4), ...
$$\Delta(\Gamma, S, \ddagger, x, y, z) = 0$$
 ($\Gamma = \frac{\partial f}{\partial x}, S = \frac{\partial f}{\partial y}$,

$$\begin{aligned} \mathbf{x} &= \frac{\partial f}{\partial z} \\ f(x, y, z) &= 0 \\ \Delta & \Gamma, \mathbf{S}, \mathbf{X} \end{aligned}$$
(1.5).

$$\Gamma\Delta_{r} + S\Delta_{s} + X\Delta_{x} = 0 \tag{1.6}$$

$$\frac{dx}{d\dagger} = \frac{\partial \Delta}{\partial r}, \frac{dy}{d\dagger} = \frac{\partial \Delta}{\partial s}, \frac{dz}{d\dagger} = \frac{\partial \Delta}{\partial x}$$
(1.7)
$$\uparrow - , \qquad .$$

, *u*

. ‡, a_1, a_2 .

, , , , (), (.1).

- 213 -

. 1

: $\ddagger \sim X$, $a_1 \sim 1$, $a_2 \sim X^{\frac{1}{2}}$. (1.5)

 $u_1 = u$

$$\Delta(p,q,s)u = A_{1,j}(p,q,s)K_{j}u\frac{\partial u}{\partial t}$$

$$p = \frac{\partial}{\partial x}, \quad q = \frac{\partial}{\partial y}, \quad s = \frac{\partial}{\partial z} \qquad \Delta = \det\left(\Gamma_{i,j}^{(k)}\frac{\partial}{\partial x_{k}}\right) -$$

$$(1.7) \quad A_{i,j} \quad -$$

$$\Gamma_{i,j}^{(k)}\frac{\partial}{\partial z}. \quad (1.8)$$

$$\begin{array}{c} [3]. \qquad \Delta \\ \hline \frac{\partial}{\partial a_{1}}, \ \frac{\partial}{\partial a_{2}}, \\ \hline \frac{\partial}{\partial a_{2}}, \\ \frac{\partial}{\partial a_{1}}, \\ \frac{\partial}{\partial a_{2}}, \\ \frac{\partial}{\partial a_{1}}, \\ \frac{\partial}{\partial a_{2}}, \\ (1.6), \\ \Delta \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \frac{1}{\left(\frac{\partial}{\partial t}\right)^{m-2}} = \left(\Delta_{r} \frac{\partial a_{1}}{\partial x} + \Delta_{s} \frac{\partial a_{1}}{\partial y} + \Delta_{s} \frac{\partial a_{1}}{\partial z}\right) \frac{\partial^{2}}{\partial t \partial a_{1}} + \end{array}$$

$$+\frac{1}{2}\left\{\Delta_{rr}\left(\frac{\partial a_{2}}{\partial x}\right)^{2}+\Delta_{ss}\left(\frac{\partial a_{2}}{\partial y}\right)^{2}+\Delta_{xx}\left(\frac{\partial a_{2}}{\partial z}\right)^{2}+\right.$$

$$+2\Delta_{rs}\frac{\partial a_{2}}{\partial x}\frac{\partial a_{2}}{\partial y}+2\Delta_{r,x}\frac{\partial a_{2}}{\partial x}\frac{\partial a_{2}}{\partial z}+2\Delta_{sx}\frac{\partial a_{2}}{\partial y}\frac{\partial a_{2}}{\partial z}\right\}\frac{\partial^{2}}{\partial a_{2}^{2}}+\dots$$

$$,$$

$$\frac{\partial^{2}}{\partial a_{2}^{2}}$$

$$x, y, z$$

$$x_{1}, x_{2}x_{3}$$

$$,$$

$$X(x_{0}, y_{0}, z_{0})$$

$$(1.9)$$

$$(1.9)$$

(.

).

 $^{\ddagger}, a_1, a_2,$

(.2)

z=const A B B y .2

 $dx = H_1 d^{\ddagger}, \, dy = H_2 da_1, \, dz = H_3 da_2, \tag{1.9}$

$$\frac{\Delta_{yy}}{H_3^2}.$$

,

(1.8) (1.9)

$$\frac{\Delta_{\rm s}}{H_2} \frac{\partial^2 u}{\partial \dagger \partial a_1} + \frac{1}{2} \Delta_{\rm xx} \frac{\partial^2 u}{H_3^2 \partial a_2^2} + \dots = \frac{\partial}{\partial \dagger} A_{{\rm l},j} K_j u \frac{\partial u}{\partial \dagger}$$
(1.10)

, (1.10)

$$\frac{\partial^2}{\partial a_1^2},$$
[4].
 \overline{V} grad $f + C_n | \text{grad} f |= 0$
(1.11)
 $\overline{V}(V_x, V_y, V_z) -$
, $f = \ddagger -\ddagger (a_1, a_2) = 0 -$
$$, C_{n} = -\hat{n}, \hat{n} - \overline{V} - \frac{1}{x, y, z}$$

‡,*a*₁,*a*₂ -

$$\frac{\partial \ddagger}{\partial a_1}, \frac{\partial \ddagger}{\partial a_2} - , \quad (1.11)$$

$$\frac{1}{H_1}(V_x+u) - V_y \frac{\partial \ddagger}{H_2 \partial a_1} - \hat{}_z \frac{\partial \ddagger}{H_3 \partial a_2} + \frac{C_n}{H_1} \sqrt{1 + \left(\frac{H_1 \partial \ddagger}{H_3 \partial a_2}\right)^2} = 0 \quad (1.12)$$

$$\frac{\partial \ddagger}{\partial a_1} - \ddagger , \qquad \left(\frac{\partial \ddagger}{\partial_1}\right)^2 \qquad .$$

$$C_n = c_n + u, \qquad c_n - u$$

$$\Delta = 0, \Delta = \Gamma_{x}^{*} + S_{y}^{*} + X_{z}^{*} + C_{n}\sqrt{\Gamma^{2} + S^{2} + X^{2}},$$

$$\Gamma, S, X$$

$$\Delta_{S} = V_{y} + \frac{1}{H_{1}}\frac{\partial C_{n}}{\partial S}, \Delta_{\chi} = V_{z} + \frac{1}{H_{1}}\frac{\partial C_{n}}{\partial X}, \Delta_{\chi\chi} = \frac{1}{H_{1}}\left(H_{1}^{2}C_{n} + \frac{\partial^{2}C_{n}}{\partial X^{2}}\right)$$

$$C_{n}(\Gamma, S, \chi) = C_{n}(\Gamma, 0, 0) + \frac{\partial C_{n}}{\partial S}S + \frac{\partial C_{n}}{\partial \chi}\chi + \frac{1}{2}\frac{\partial^{2}C_{n}}{\partial \chi^{2}}\chi^{2} \qquad (1.13)$$

$$S = -\frac{\partial t}{H_{2}\partial a_{1}}, \chi = -\frac{\partial t}{H_{2}\partial a_{2}}, C_{n} = (\Gamma, 0, 0) = -V_{\chi}, \qquad (1.13)$$

$$S = -\frac{C_4}{H_2 \partial a_1}, X = -\frac{C_4}{H_3 \partial a_2}, C_n = (\Gamma, 0, 0) = -V_x, \qquad (1.13) \qquad (1.10),$$

(1.10).

,

,

$$\frac{\partial^2 u}{\partial t \partial t} + \frac{1}{2} \Delta_{xx} \frac{\partial^2 u}{H_3^2 \partial r_2^2} - \frac{\partial u}{\partial t} \frac{d \ln \Phi}{d t} = -\frac{\partial}{\partial t} \left(\frac{1}{H_1} u \frac{\partial u}{\partial t} \right)$$
(1.14)
$$\tau ,$$

(1.10),	-	$-\frac{\partial u}{\partial \ddagger}\frac{d\ln\Phi}{\partial \dagger},$	Φ(‡) – † –
,	, [5,6]		"
$d\dagger = \frac{H_2 da_1}{\Delta S}$			
K e (}+1)			
(1.14) † 7 7			
$\ddagger = \text{const}$,	, ‡ = const
$z = \text{const} (. 2). \qquad , , , $	= const		n
[1], <i>t</i>	z		$r_1 = a_1(z, \ddagger),$
$r_2 = a_2(,, \ddagger).$	(1.9), (1.14)		
$\frac{\partial u}{\partial \dagger} + \frac{1}{2} \frac{\partial v'}{\partial \dagger} - u \frac{\partial \ln \Phi}{\partial \dagger} =$	$=\frac{\}+1}{H_1}u\frac{\partial u}{\partial \ddagger}, \ \frac{\partial u}{\partial _{\#}}=$	$=\frac{\partial v'}{\partial \ddagger}$	(1.15)
$\sim = \Delta_{\rm rr} \left(\frac{\partial_{\rm m}}{\partial x}\right)^2 + \Delta_{\rm ss} \left(\frac{\partial_{\rm m}}{\partial y}\right)^2$	$\left(\frac{\partial u}{\partial x}\right)^2 + 2\Delta_{rs} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}$	$=-\frac{1}{H_{3}^{2}}\frac{s''(r)}{r}$	$\frac{1}{2}\Delta_{s}^{3}\left(r^{2}+s^{2}\right)$
s(r)	,	5	, H ₃ – –
e	$dz/d\dagger = r\Delta_r$	$+ S\Delta_s$.	
1,			

- Ieffrey A., Tanutti T., N nlinear wave propagation. 1964, New-York-London.
 . .
- 5.

.

: 1967.

- Zahalak G.I., Myers M.K. Couical flow neer singular rays, Jonrnal of fluid mecshanics 1974. vol 63. 3.
- 11. Whitham G.B. The behaviour of supersonic flow past o boldy of revolation for from the axis "Proceed Roy. Soc. A 201" 89 (1950).

. .- . ., ,

.: 24-40-32, (093) 24-17-30

:

[1-4].

,

,

R

 (r, φ)

Oxy,

,

.

,

,

$$Ox$$

$$L = \left\{ \bigcup_{k=1}^{N} \left[a_{k} \le x \le b_{k} \right], \quad y = 0 \right\}, L' = \left[-R, R \right] \setminus L$$

$$\left(a_{k-1} < b_{k-1} < a_{k}, \quad b_{N} > a_{N}, \quad k = 1, 2, 3 \dots N \right)$$

$$Oz$$

 $u(r, \varphi)$

,

Oz.

•

,

,

(). [5]. (+) (-)

1.

$$\begin{split} \varphi_{1}(t) &= u_{1}^{+} - u_{1}^{-}; \qquad \varphi_{2}(t) = u_{2}^{+} - u_{2}^{-} \\ \mu_{+} \frac{\partial_{-}}{\partial \varphi} \Big|_{\varphi=0} - \mu_{-} \frac{\partial_{-}}{\partial \varphi} \Big|_{\varphi=0} = T_{1}(t) = \begin{cases} \psi_{1}(t), \ t \in L \\ 0, \ t \in L' \end{cases} \end{split}$$
(1.2)
$$\begin{aligned} \mu_{+} \frac{\partial_{-}}{\partial \varphi} \Big|_{\varphi=\pi} - \mu_{-} \frac{\partial_{-}}{\partial \varphi} \Big|_{\varphi=-\pi} = T_{2}(t) = \begin{cases} \psi_{2}(t), \ t \in L \\ 0, \ t \in L' \end{cases} \\ \psi_{1}(t) = \tau_{1}^{+} - \tau_{1}^{-}, \qquad \psi_{2}(t) = \tau_{2}^{+} - \tau_{2}^{-} \\ &: r = \operatorname{Re}^{-t}, u_{\pm}(\operatorname{Re}^{-t}, \varphi) = \phi_{\pm}(t, \varphi), \ \mu_{+} \qquad \mu_{-} - \\ &, \ u_{i}^{\pm}(t) \ (i=1,2) - \\ &\varphi=0, \ \varphi=\pi \end{split}$$

, $\tau_i^{\pm}(t)$ (*i*=1,2)–

.

(1.1) (1.2), $A_{\pm}(\lambda) = B_{\pm}(\lambda)$

$$\begin{split} \mu_{+} \frac{\partial_{-}}{\partial \varphi} \bigg|_{\varphi=0} + \mu_{-} \frac{\partial_{-}}{\partial \varphi} \bigg|_{\varphi=0} &= G_{1}(t) = \begin{cases} g_{1}(t), & t \in L \\ \tau(t), & t \in L' \end{cases} \\ \mu_{+} \frac{\partial_{-}}{\partial \varphi} \bigg|_{\varphi=\pi} + \mu_{-} \frac{\partial_{-}}{\partial \varphi} \bigg|_{\varphi=\pi} &= G_{2}(t) = \begin{cases} g_{2}(t), & t \in L \\ \tau(t), & t \in L' \end{cases} \\ (1.1) \quad (1.3), \end{cases}$$

$$\end{split}$$
(1.4)

.

$$\alpha_{1}(x) + \beta \int_{0}^{R} V_{1}(u) K_{2}(u, x) du = G_{1}(x) \quad 0 < x < R$$
(1.5)

-

$$\alpha_{2}(x) - \beta \int_{0}^{0} V_{2}(u) K_{1}(u, x) du = G_{2}(x) - R < x < 0$$
$$K_{1}(x, u) = \frac{1}{(u+x)^{2}} + \frac{x^{2}}{(ux+R^{2})^{2}}, \quad K_{2}(x, u) = K_{1}(-u, x)$$

:

•

-

$$\varphi(u) = \begin{cases} V_2(u), & 0 < u < R \\ V_1(u), & -R < u < 0 \end{cases}, \quad \alpha = \frac{(\mu_+ - \mu_-)}{(\mu_+ + \mu_-)}, \quad \beta = \frac{2\mu_-\mu_+}{\pi(\mu_+ + \mu_-)}, \\ , & \tau_1^+ = \tau_2^+ = \tau^+, \quad \tau_1^- = \tau_2^- = \tau^- \end{cases}$$
(1.5)

$$\frac{1}{\pi} \int_{-R}^{R} \left(\frac{1}{u - x} + \frac{1}{u - R^2 / x} \right) \varphi'(u) du = F(x), \quad -R < x < R$$
(1.6)

$$F(x) = \begin{cases} f(x), & x \in L \\ h(x), & x \in L' \end{cases}, f(x) = \frac{\tau^{+}}{\mu_{+}} + \frac{\tau^{+}}{\mu_{-}}, h(x) = \frac{\mu_{+} + \mu_{-}}{\mu_{+} \mu_{-}} \tau(x) \\ (1.6) & L, \end{cases}$$

$$\frac{1}{\pi} \int_{L} \left(\frac{1}{u-x} + \frac{1}{u-R^2/x} \right) \varphi'(u) du = f(x) \quad (x \in L)$$
(1.7)

$$\varphi(a_k) = \varphi(b_k) = 0, \ (k = 1, 2...N)$$
 (1.8)

(1.6)
$$L, \ldots, L',$$

$$\vdots$$

$$\frac{\beta}{\pi} \int_{L} \left(\frac{1}{u-x} + \frac{1}{u-R^2/x} \right) \varphi'(u) du = \tau(x), \quad (x \in L')$$
(1.9)

(1.7) (1.8),

_

- 221 -

[a, b](k=1, 2, ...N)

,

,

Ν

$$L, \qquad \tau_{1}(x) = \tau_{1}^{+} - \tau_{1}^{-}, \tau_{2}(x) = \tau_{2}^{+} - \tau_{2}^{-}.$$

$$, \qquad \tau_{1}^{+} = \tau_{2}^{+}, \quad \tau_{1}^{-} = \tau_{2}^{-},$$

$$u(x) = u_{+}(x) = u_{-}(x) \quad x \notin L, \quad u_{+}(x) = u_{-}(x) = u_{0}(x) \quad x \in L$$

$$u_{0}(x) - \qquad .$$

,

$$\mu_{+} \frac{\partial u_{+}}{\partial x} = -\frac{1}{\pi} \int_{-R}^{R} K(x, u) g_{+}(u) du \quad -R < x < R$$

$$\mu_{-} \frac{\partial u_{-}}{\partial x} = \frac{1}{\pi} \int_{-R}^{R} K(x, u) g_{-}(u) du$$

$$g_{\pm}(u) = \begin{cases} \tau_{\pm}(u), u \in L \\ \tau(u), u \in L \end{cases}$$
(2.1)
(2.2)

:

$$-\frac{1}{\pi}\int_{-R}^{R} K(x,u)g(u)du = \tilde{u}(x) - R < x < R$$

$$g(u) = g_{+}(u) - g_{-}(u) \qquad L, \quad \tilde{u}(x) = \mu_{+}\frac{\partial u_{+}}{\partial x} + \mu_{-}\frac{\partial u_{-}}{\partial x}$$

$$(2.2)$$

$$(2.2)$$

$$(2.3)$$

$$\int_{a_k}^{b_k} g(u) du = 0, \quad (k = 12...N)$$
(2.4)

.

$$-\frac{1}{\pi} \int_{L} K(x,u)g(u)du = \mu u(x), \quad (x \in L')$$

$$, \qquad (2.5), \qquad (2.4), \qquad (2.4),$$

.

-

,

•

. .- . ., . . . E-mail: <u>mechins@sci.am</u>

:

2a,

 $\ddagger_0(r)$,

:

OY

,

 $\begin{aligned} \ddagger_{\binom{(1)}{2}}(r,\frac{f}{2}) &= \ddagger_{0}(r) & (0 < r < \infty) \\ W_{2}(r,-\frac{f}{2}) &= 0 & (0 < r < \infty) \\ \ddagger_{\binom{(1)}{2}}(r,0) &= \ddagger_{\binom{(2)}{2}}(r,0) & (a < r < \infty) \\ W_{1}(r,o) &= W_{2}(r,o) & (a < r < \infty) \\ W_{2}(r,o) &= c & (0 < r < a) \\ \ddagger_{\binom{(2)}{2}}(r,o) &= 0 & (0 < r < a) \\ W_{j}(r,\binom{1}{2})(j=1,2) - , , \end{aligned}$ (1.1)

$$\begin{aligned} \ddagger_{\{z}^{(1)}(r,0) - \ddagger_{\{z}^{(2)}(r,0) = \ddagger(r) \\ & 0 < r < a \end{aligned}$$
(1.3)
$$W_{1}(r,0) - W_{2}(r,0) = W(r) \\ & (1.1) \quad (1.3). \\ & [1], \\ W_{j}(r,\{) = \frac{1}{2fi} \int_{c-i\infty}^{c+i\infty} [A_{j} \sin\{s + B_{j} \cos\{s]r^{-s}ds] \\ (-1 < Re \ c < 0, \ j = 1, 2) \\ A_{j} \quad B_{j} \quad j = 1, 2 \\ & (1.1), \\ \ddagger(r) \quad W'(r) \\ & \vdots \\ \begin{cases} GW'(r) - \frac{G}{fr} \int_{0}^{a} \frac{\sqrt{rr_{0}}}{r_{0} + r} W'(r_{0}) dr_{0} - \frac{1}{fr} \int_{0}^{a} \frac{\sqrt{rr_{0}}}{r_{0} - r} \ddagger(r_{0}) dr_{0} = f_{1}(r) \\ & \\ \ddagger(r) - \frac{1}{fr} \int_{0}^{a} \frac{\sqrt{rr_{0}}}{r_{0} + r} \ddagger(r_{0}) dr_{0} - \frac{G}{fr} \int_{0}^{a} \frac{\sqrt{rr_{0}}}{r_{0} + r} W'(r_{0}) dr = -f_{2}(r) \\ f_{1}(r) = -\frac{1}{fr} \int_{L} \frac{\sqrt{2r_{0}r}(r_{0} - r)}{r_{0}^{2} + r^{2}} \ddagger_{0}(r_{0}) dr_{0} \\ f_{2}(r) = \frac{1}{fr} \int_{L} \frac{\sqrt{2r_{0}r}(r_{0} + r)}{r_{0}^{2} + r^{2}} \ddagger_{0}(r_{0}) dr_{0} \end{aligned}$$

,

(1.4),

$$r = 0$$
 , $W(a) = 0$.
 $\mathbb{E}_{\pm}(r) = \sqrt{r}(GW'(r) \pm \ddagger(r))$, (1.4)
:

$$\mathbb{E}_{+}(r) - \frac{1}{f} \int_{0}^{a} \frac{2r_{0} \{ +(r_{0}) \}}{r_{0}^{2} - r^{2}} dr_{0} = F_{+}(r)$$
(1.5)

$$\mathbb{E}_{-}(r) + \frac{1}{f} \int_{0}^{a} \frac{2r_{0} \{ _{+}(r_{0})}{r_{0}^{2} - r^{2}} dr_{0} = F_{-}(r)$$
(1.6)

$$F_{\pm}(r) = \sqrt{r} (f_1(r) \mp f_{\pm}(r))$$
(1.5) (1.6) $r_0^2 = sa^2, r^2 = xa^2.$

$$\mathbb{E}_{+}^{*}(x) = \mathbb{E}_{+}(a\sqrt{x}), \qquad \mathbb{E}_{-}^{*}(x) = \mathbb{E}_{-}(a\sqrt{x})/\sqrt{x}$$

$$F_{+}^{*}(x) = F_{+}(a\sqrt{x}), \qquad F_{-}^{*}(x) = F_{-}(a\sqrt{x})/\sqrt{x}$$

:

$$\mathbb{E}_{\pm}^{*}(x) \mp \frac{1}{f} \int_{0}^{1} \frac{\mathbb{E}_{\pm}^{*}(s)}{s-x} ds = F_{\pm}^{*}(x)$$

$$x = 0$$
(1.7)

[2]:

$$\mathbb{E}_{\pm}^{*}(x) = \mp \tilde{S}_{\pm}(x) \left[\frac{\sqrt{2}}{2} F_{\pm}^{*}(x) - \frac{1}{2f} \int_{0}^{1} \frac{F_{\pm}^{*}(s) - F_{\pm}^{*}(x)}{\tilde{S}_{\pm}(s)(s-x)} \right]$$
(1.8)

$$\tilde{S}_{+}(x) = \left(\frac{x}{1-x}\right)^{\frac{3}{4}}, \qquad \tilde{S}_{-}(x) = \left(\frac{x}{1-x}\right)^{\frac{1}{4}} \\
(1.8), \\
\mathbb{E}_{+}(r) = -\tilde{S}_{+}^{*}(r) \left[\frac{\sqrt{2}}{2}F_{+}(r) - \frac{1}{f}\int_{0}^{a}\frac{F_{+}(r_{0}) - F_{+}(r)}{\tilde{S}_{+}^{*}(r_{0})(r_{0}^{2} - r^{2})}r_{0}dr_{0}\right] \qquad (1.9) \\
\mathbb{E}_{+}(r) = \tilde{S}_{+}^{*}(r) \left[\sqrt{2r}F_{+}(r) - \frac{1}{f}\int_{0}^{a}\sqrt{r}F_{-}(r_{0}) - \sqrt{r_{0}}F_{+}(r)F_{-}(r)\right] \qquad (1.9)$$

$$\mathbb{E}_{-}(r) = \mathbb{S}_{-}^{*}(r) \left[\frac{\sqrt{2r}}{2} F_{-}(r) - \frac{1}{f} \int_{0}^{1} \frac{1 - \sqrt{6} \sqrt{6} + \sqrt{7}}{\tilde{\mathbb{S}}_{-}^{*}(r_{0})(r_{0}^{2} - r^{2})} \sqrt{r_{0} r dr_{0}} \right] (1.10)$$
$$\tilde{\mathbb{S}}_{+}^{*}(r) = \frac{r^{3/2}}{(a^{2} - r^{2})^{3/4}}, \quad \tilde{\mathbb{S}}_{-}^{*}(r) = \frac{\sqrt{r}}{(a^{2} - r^{2})^{1/4}}$$

$$\mathbb{E}_{\pm}(r) \quad (1.9) - (1.10),$$

$$W'(r) = \frac{1}{2G} \left\{ -\frac{\sqrt{2}rF_{+}(r)}{2(a^{2} - r^{2})^{3/4}} + \frac{\sqrt{2}rF_{-}(r)}{2(a^{2} - r^{2})^{1/4}} + \frac{r}{f(a^{2} - r^{2})^{3/4}} \int_{0}^{a} \frac{\left[F_{+}(r_{0}) - F_{+}(r)\right](a^{2} - r_{0}^{2})^{3/4}}{(r_{0}^{2} - r^{2})\sqrt{r_{0}}} dr_{0} - (1.11) \right\}$$

$$-\frac{\sqrt{r}}{f(a^{2} - r^{2})^{1/4}} \int_{0}^{a} \frac{\sqrt{r}F_{-}(r_{0}) - \sqrt{r_{0}}F_{-}(r)}{\sqrt{r_{0}}(r_{0}^{2} - r^{2})} (a^{2} - r_{0}^{2})^{1/4} dr_{0} \right\}$$

$$\ddagger (r) = -\frac{\sqrt{2}r\left[F_{+}(r) + \sqrt{a^{2} - r^{2}}F_{-}(r)\right]}{4(a^{2} - r^{2})^{3/4}} + \frac{r}{2f} \int_{0}^{a} \frac{\left[F_{+}(r) - F_{-}(r)\right]}{r_{0}^{2} - r^{2}} \left[\left(\frac{a^{2} - r_{0}^{2}}{a^{2} - r^{2}}\right)^{3/4} \frac{dr_{0}}{\sqrt{r_{0}}} + (1.12)\right]$$

$$+ \frac{r}{2f} \int_{0}^{a} \frac{\sqrt{r}F_{-}(r_{0}) - \sqrt{r_{0}}F_{-}(r)}{r_{0}^{2} - r^{2}} \left[\left(\frac{a^{2} - r_{0}^{2}}{a^{2} - r^{2}}\right)^{1/4} dr_{0}\right]$$

$$, \quad W(a) = 0, \qquad W(r)$$

$$W(r) = \int_{0}^{r} W'(r)dr - \int_{0}^{a} W'(r)dr = \int_{a}^{r} W'(r)dr$$

$$W(0) = -\int_0^a W'(r)dr$$

$$\ddagger_{\{z}^{(1)}(r,0) = \ddagger_{\{z}^{(2)}(r,0) = -\frac{1}{2fi} \int_{c-i\infty}^{c=i\infty} GsA_1(S)r^{-s-1}ds =$$

.

$$= \frac{1}{2f r} \int_{0}^{a} \frac{\sqrt{rr_{0}^{\ddagger}(r_{0})}}{r_{0} + r} + \frac{G}{2f r} \int_{0}^{a} \frac{\sqrt{rr_{0}}}{r_{0} + r} W'(r_{0}) - f_{2}(r)$$
(1.13)

$$(r > a)$$

$$(r > a)$$

$$(r > a)$$

$$\ddagger \int_{z}^{(j)} (r, 0) = \frac{1}{4f \sqrt{r}} \int_{0}^{1} \frac{\mathbb{E}_{+}^{*}(s)}{s - \left(\frac{r}{a}\right)^{2}} ds - \frac{\sqrt{r}}{2f} \int_{0}^{1} \frac{\mathbb{E}_{-}^{*}(s)}{s - \left(\frac{r}{a}\right)^{2}} ds - f_{2}(r)$$

$$(r > a)$$

$$(1.14)$$

$$(1.8) \qquad a \qquad , \qquad x = 1 \quad (r = a)$$

$$\mathbb{E}_{+}^{*}(x) \qquad , \qquad \mathbb{E}_{+}^{*}(x) = \frac{3/4}{r}, \qquad \mathbb{E}_{-}^{*}(x) = \frac{1/4}{r}.$$

(1.14) $\mathbb{E}_{+}^{*}(x)$.

. .

$$\begin{aligned} & \ddagger_{\{z}^{(j)}(r,0) = -\frac{r}{2\sqrt{2}f\left(r^2 - a^2\right)^{3/4}} \int_{0}^{a} \frac{\left(a^2 - r_0^2\right)^{3/4}}{\sqrt{r_0}\left(r_0^2 - a^2\right)} dr_0 - \\ & -\frac{\sqrt{r}}{2f} \int_{0}^{1} \frac{\mathbb{E}_{-}^{*}(s)ds}{s - \left(\frac{r}{a}\right)^2} - f_2\left(r\right) \qquad (r > a) \end{aligned}$$
(1.15)

$$r = a \qquad (1.15) \qquad : K_{III}(a) = \sqrt{2f} \lim_{r \to a+0} (r-a)^{3/4} \ddagger_{\{z}^{(j)}(r,0) = = \frac{\sqrt[4]{2a}}{4\sqrt{f}} \int_{0}^{a} \frac{F_{+}(r_{0}) dr_{0}}{\sqrt{r_{0}} \sqrt[4]{a^{2} - r_{0}^{2}}} \qquad (1.16) , \qquad \ddagger (r) = 0,$$

$$\frac{G}{2f\sqrt{r}} \int_{0}^{a} \frac{\sqrt{r_{0}}W'(r_{0})}{r_{0} - r} dr_{0} = f_{2}(r) \quad (0 < r < a)$$
(1.17)
(1.17), $r = 0$, :

$$W'(r) = \frac{2}{f G \sqrt{a - r}} \int_{0}^{a} \frac{\sqrt{a - r_0} f_2(r_0)}{r_0 - r} dr_0 \qquad (1.18)$$

$$W'(r) \qquad (1.18) \qquad ,$$
e ,

•

$$\ddagger_{\{z}^{(j)}(r,0) = -\frac{1}{f\sqrt{r-a}}\int_{0}^{a}\frac{\sqrt{a-r_{0}}f_{2}(r_{0})}{r_{0}-r}dr_{0}$$

$$K_{III}(a) = \sqrt{\frac{2}{f}} \int_{0}^{a} \frac{f_{2}(<)d<}{\sqrt{a-<}}$$
(1.19)

r = a.

•

. .: ,

Х

х:

1968.511 .

· ·- · ·, : 0019 , Х 24 : (+37410) 56-81-89; E-mail: Lilit_Dashtoyan@mechins.sci.am

Х

[1].

·

[2].
, , [3-4].

$$(-\infty < x < \infty, -d < y < d),$$

.
 $H_0,$
.
 $x_2 = \pm d$
.
 x .

٠,

,

,

$$\begin{split} \Delta A &= \frac{4f^{\dagger}}{c^2} \left(\frac{\partial A}{\partial t} - H_0 \frac{\partial w}{\partial t} \right) \\ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (1 - \frac{\partial^2 v}{\partial x \partial y}) = \frac{1}{c_l^2} \frac{\partial^2 u}{\partial t^2} \\ \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial x^2} + (1 - \frac{\partial^2 u}{\partial x \partial y}) + \frac{H_0}{4f \dots c_l^2} \Delta A = \frac{1}{c_l^2} \frac{\partial^2 v}{\partial t^2} \\ \Delta A^{(e)} - \frac{1}{c^2} \frac{\partial^2 A^{(e)}}{\partial t^2} = 0 \\ (e) &= 1, \ (e) &= 2 \\ \vdots \\ u(x, y, t); \ v(x, y, t)) \\ \vdots \quad A^{(1)}(x, y, t); \end{split}$$

 $A^{(2)}(x, y, t) - y \ge d, \ y \le -d,$

 Belubekyan M., Chazaryan K., Marzocca P., Cormier C. Localized Magnetoelastic Bending Vibration of an Electroconductive Elastic Plate, Journal of Applied Mechanics, Transaction ASME, USA, November 2007, Vol. 74. p.1071-1077

E-mail: <u>ghkarren@gmail.com</u>

. .

. .- .

:

- 231 -

THE INFLUENCE OF AXIAL TENSION ON THE STRENGTH, CREEPING DEFORMATIONS, AND DISSIPATIVE PROPERTIES OF GLASS-REINFORCED TUBES UNDER THE SHEAR CONDITIONS *Karapetyan K.A.*

Yerevan, Armenia

Introduction

It is known that it is possible to use tubular elements from layered and longitudinal-crossly reinforced composites as driving shafts and axles of quickly rotating rotors [1, 2], though such materials badly resist to the shear [3]. Under exploitation these constructions are mainly subjected to shear in the conditions of intensive vibration and the question of increasing their shear strength and damping properties is an actual problem.

The influence of the permanent axial tension on the strength under shear and on the coefficient of the energy relative scattering (logarithmic decrement of damping) of layered tubular elements from polymeric composites is considered.

Experimental

Test samples are tubes with the inside diameter 38 mm, the thickness of the wall 2.25 mm, and the length 285 mm, made on the base of glass cloth impregnated by binder. The directions of the tube longitudinal axis and the base of glass cloth coincided ($\{ = 0^{\circ} \}$).

The short-term tests of the tubes were conducted by the following procedure. As a preliminary the limits of the samples strength under one-axial tension \dagger_z^* and under simple torsion \ddagger_{zz}^* were determined. Later the tested samples-twins were subjected to the axial tension till the certain level (0.2; 0.4; 0.6 and 0.8 σ_z^*) and keeping this loading unchangeable were lead up to fracture through static application of the torque.

During the creeping tests, the glass-reinforced tubes were loaded by the essential level of torsion torque M_K (0.5,0.6,0.7, and 0.8 \ddagger_{zz}^* correspondingly) and carried out the observations of the changes of shear deformations the dependence on time. The similar tests for tubes preliminary loaded by the axial tension P corresponding 0.6 \ddagger_z^* were made.

At the investigation of damping properties (coefficient of scattering or dissipation of energy \mathbb{E}) of tubes the static direct method the essence of which is in building the static hysteresis loop for every cycle of loading–off-loading and conducting the corresponding calculations, was applied.

The calculations were fulfilled on the base of the experimentally obtained dependence between the intensities of shear deformations Γ and tangential stresses T.

The analytic expressions of the denoted values in cylindrical coordinate system have the form of [4]

in case of the simple torsion of the tubes-

$$\mathbf{T} = \left| \boldsymbol{\tau}_{\boldsymbol{\theta}_{\mathcal{I}}} \right| \tag{1}$$

$$\Gamma = \left| \gamma_{\theta_z} \right| \tag{2}$$

in case of the tubes torsion under permanently acting tension

$$T = \frac{1}{\sqrt{3}} \sqrt{\dagger_{z}^{2} + 3 \dagger_{zz}^{2}}$$
(3)

$$\Gamma = \sqrt{\frac{(v_z - v_r)^2 + (v_r - v_r)^2 + (v_r - v_z)^2 + 1.5x_{rz}^2}{1.5}}$$
(4)

In expression (4) $V_r = - \underset{1}{\in} _1 V_z$, $V_r = - \underset{2}{\in} _2 V_z$, where the average values of Poisson's ratio $\underset{1}{\in} _1$ and $\underset{2}{\in} _2$ for the tested glass-reinforced plastic equal approximately 0.2 and 0.16 correspondingly.

The experimental dependence between T and Γ in the regions of the ascending (\rightarrow) and descending (\leftarrow) branches of the hysteresis loop in the frame of the cycle was approximated by following function

$$\vec{\tilde{T}} = T_L \frac{\Gamma - \Gamma_{res}}{\vec{\tilde{a}} \pm \vec{\tilde{b}} \left(\Gamma - \Gamma_{res} \right)}$$
(5)

were $T_{\rm L}$ is the limiting value of T, corresponding to the fracture of tested samples, Γ_{res} is the intensity of the residual shear deformations, *a* and *b* are the parameters of the approximation.

In the denominator of formula (5) the sign (+) is chosen in case of the convexity of a deformation curve, and the sign (-) is chosen in case of its concavity.

The calculations showed that in here considered cases of tubes experiments the description of the experimental dependences between T and Γ by function (5) is acceptable.

The energy scattering coefficient ψ was calculated by the following formula

$$\mathbb{E} = \frac{\Delta W}{W} == 1 - \frac{\vec{a} \left\{ \mp \frac{\left(\Gamma_{amp} - \Gamma_{res}\right)}{\vec{X}} - \ln \left| 1 \mp \frac{\left(\Gamma_{amp} - \Gamma_{res}\right)}{\vec{X}} \right| \right\}}{\vec{a} \left[\pm \frac{\Gamma_{amp}}{\vec{X}} - \ln \left| 1 \pm \frac{\Gamma_{amp}}{\vec{X}} \right| \right]}$$
(6)

where ΔW is the value of the energy scattering for a cycle, W is the full deformation energy of the cycle, Γ_{amp} is the amplitude value of the shear

deformation intensity, $\vec{X} = \vec{a} / \vec{b}$.

The results of short-term tests are brought in the table 1.

Table 1.

σ_z^i/σ_z^*	0	0.2	0.4	0.6	0.8
$\tau^*_{_{\theta_{\mathcal{I}}}}$, MPa	47,1	50,4	49,5	61,4	53,1

According to the data in the table, with the increase of the level of permanently acting tensile stress the initial increase and further decrease of the shear strength of glass-reinforced plastic tubes take place. The maximum significance of this strength growth reaching more than 30%, is observed in the tubes which are preliminarily loaded by axial tensile stress 0.6^{+*} .

It was also found out that under torsion of tubes, loaded beforehand by axial tension the fracture takes place along elliptical section. With this the largest angle of the inclination of the fracture plane reaches under the axial stress 0.6^{+}_{z} and composes 13-17°.

Duration of observation, min.

Fig.1 Curves of creeping shear deformations of glassreinforced tubes

The experimental curves of glass-reinforced tubes' creeping are represented in Fig.1. From the data of fig.1 it follows that in case of simple torsion (P=0) when

the value of torsion torque $M_{\rm K}$ =0.8 $M_{\rm p}$ ($M_{\rm p}$ - destructive torsion torque) the shear deformations of creeping are developing intensively until the destruction of tubes within 22-33 min. after loading. In case of axial tension (P=0.6 $P_{\rm p}$) with the above-mentioned value of torsion torque creeping deformations are developing with the significant damping (Fig.1).

From the data of Fig.1 it also follows that the presence of axial tension does not influence the value of creeping shear deformations, in case of the loading of glass-reinforced tubes by the torsion torque $M_K \ 0.6M_p$. In case of $M_K > 0.6M_p$ the presence of axial tension brings to the more significant decrease of value c_z .

Curves of intensities changes of amplitude (Γ_{amp}) and residual (Γ_{res}) shear deformations in the frame of the cycle depending on number *n* of cycle of tube tests under repeated-static torsion (curve 1) and the torsion in the conditions $\sigma_z = 0.6\sigma_z^*$ (curve 2) are represented in Fig.2.

Fig. 2 Curves of changes of amplitude and residual shear deformations.

From the data of Fig. 2 it follows that in case of repeated-static torsion of glassreinforced plastic tubes, the presence of the permanent torsion brings to essential decrease of values Γ_{amp} and Γ_{res} for the same cycle.

In the Fig.3 the curves of changes of the scattering energy coefficient ψ depending on the number of the loading–off-loading cycle, obtained in the condition of the cyclical pure shear (curve 1) and the shear under the presence of the permanent tension $\sigma_z = 0.6\sigma_z^*$ (curve 2), are brought.

From this figure it follows that when applying the permanent tensile stress $\sigma_z = 0.6\sigma_z^*$, the coefficient of the energy scattering (capacity of damping) of glass-reinforced plastic tubes, subjected to cyclical torsion, is 1.3-1.5 times more than under cyclical pure shear.

Fig. 3 Change of damping factor

Conclusion

Of the above-indicated experimentally obtained regularities it is possible to come to the conclusion that the shear strength and damping properties of the reinforced composites constructive elements in the form of hollow shafts may be essentially increased by applying additional permanent axial tension.

The constructive solution of this question in the concrete mechanisms may appear very simple.

REFERENCES

- 1. Authorial testimony of the USSR, No 1419651, 1988, No 32, p. 28
- 2. Stepanenko N.D. On rational reinforcing of the constructions of composite materials. *Reports of AN SSSR*, **4** (1989) 878-881.
- 3. Baltin U.P., Tamough V.P. –Cyclical strength of glass-reinforced plastics under shear in reinforcing plane. *Mechanics of polymers*, **5** (1975) 928-931.
- 4. Kachanov, L.M. Bases of the plasticity theory. Nauka, Moscow (1969)

Information about author:

Karapetyan K. A.

Doctor of Engineering Sciences Dean of the Laboratory of Experimental Investigations Institute of Mechanics of NAS of RA Address:24b Baghramyan, Yerevan, 0019, Armenia Tel: (37410)524852 E-mail: <u>koryan@mechins.sci.am</u>

, , ,

,

• , ,

,

,

$$(G = G = G),$$

$$(G =$$

$$h_{,}$$

 $h_{,}$

N /2		,	h ,
, /		,	, ,
	$\left(N_{+}/2\right)$		•
(1)			

(.1).

,

 $2h_{,}$.

,

$$2N_{,} = F_{,} \cdot h_{,} + F_{,} \cdot h_{,} , \qquad (1)$$

$$N_{,} = N_{,} \qquad 2N_{,} = 2N_{,} , \qquad .1 .$$

$$h_{,i} \qquad ,$$

1-1 2-2 2-2 3-3. 2F, h, h

$$M = F_{,} h_{,} \quad \in_{i}.$$

(1)

$$F_{,} h_{,} \cdot v_{i} = 2F_{,i} \cdot h_{,} \cdot \rho_{i} + 2F_{,i} \cdot h_{,} \rho_{i}, \qquad (2)$$
$$2F_{,i} = 2F_{,i} = F_{,} = F_{,}$$

$$h_{0}, \qquad \left(G = N \, (\in_{i} - 2 \dots_{i}) \right) g$$
$$\left(G = N \, (\cdots_{i} \cdot g \right), \qquad (f = N \, (f = N \, (f = 1 \, ($$

$$W_{i} = \frac{N_{\cdot} \cdots_{i}}{N_{\cdot} \in_{i}}$$

$$\cdots_{i} \qquad (4 \quad (3),$$

$$\vdots \qquad (4)$$

$$h_{,} = \frac{F_{,} h_{,} (1-2W_{i})}{2F_{,} \cdot W_{i}}$$

$$(\underbrace{\in}_{i} - 2..._{i}) / ..._{i} \quad (3) \quad (1-2W_{i}) / W_{i} \quad (5)$$

$$, \qquad (5)$$

$$K_{i} = \frac{\underbrace{\epsilon_{i} - 2}_{\dots_{i}}}{\dots_{i}} \qquad K_{i} = \frac{\underbrace{\epsilon_{i} - 2W_{i}}}{W_{i}} \qquad (6)$$
(3) (5) , $h_{,} \qquad h_{,} \qquad h_{,}$

 $h_{,}$

 $(I_0 = 1)$

- 239 -

$$h_{,i} = h_{,i} \qquad , \qquad . \qquad K_{i} < 1$$

$$h_{,i} = h_{,i} \qquad h_{,i} = F, \qquad h_{,i} = h_{,i} \qquad (7)$$

$$h_{,i} = \frac{F_{,} \cdot h_{,i} (\in_{i} - 2 \dots_{i})}{2F_{,i} \cdot \dots_{i}} \qquad h_{,i} = \frac{F_{,} \cdot h_{,i} (1 - 2W_{i})}{2F_{,i} \cdot W_{i}} \qquad (7)$$

$$h_{,i} \qquad h_{,i} \qquad h_{$$

K, W_i

(8)

,

(9)

 $F_{,}h_{,i}$. , $F_{,}h_{,i}$, . , $h_{,}$ - $\left(h_{,} = h_{,}\right)$ (t_i) . t_i

$$(7) \qquad t_{i} .$$

$$(7) \qquad t_{i} .$$

$$(7) \qquad t_{i} .$$

$$(10) \qquad (10) \qquad ($$

:

$$v_{,j} = \frac{h}{4t_i}$$
(11)

,

$$n_0 = 1$$
.
 $h_{i,i} > h_{i,j}$

:

$$h_{,i} = n_i h_{,}$$
 (13)
 $n_i - , 1 4.$
 $(12) (6) (13) :$
 $v_{,i} = \frac{4F_{,} \cdot v_{,} n_i h_{,} \cdot K_i}{F_{,i} h}$ (14)

 $h_{,i}$

$$h_{,i} = h_{,i} = h_{,i} = h_{,i}$$
 (15)
 $n_i h_{,i} / h$ (14)

$$h$$
 , :

$$I_i = \frac{n_i h}{h} \tag{16}$$

$$h_{,} = 1$$
 , (8) (14)

$$n_i \cdot h_{,} / h_{,}$$
, (16) :

$$\frac{1}{I_i} = n_i h_{,i} / h_{,i};$$

$$h_{,i}:$$

$$I_i = \frac{1}{n_i}$$

$$(17)$$

.

$$I_i = \sin r = \frac{1}{n_i} \tag{18}$$

α– (14) (16)

$$\mathbf{v}_{,j} = \frac{4F_{,} \cdot \mathbf{v}_{,} K_{i}I_{j}}{F_{,i}}$$

$$n_{i} \quad (17) \quad (14),$$
(19)

$$\mathbf{v}_{,i} = \left(4F_{,} \cdot \mathbf{v}_{,} \cdot K_{i}\right) / F_{,i} \cdot I_{i}$$

$$\mathbf{v}_{,i} \cdot F_{,i} \quad \mathbf{v}_{,i} \cdot F_{,i} \quad (19) \quad (20)$$

$$(20)$$

$$q_{i,j} = 4q_{0,j} \cdot K_i \cdot I_j$$
(21)

$$q_{j} = \left(q_{j} \cdot K_{i}\right) / I_{j}$$

$$(22)$$

(20) $\begin{array}{c}h_{,} (t_{i})\\-242\end{array}$ $\mathbf{v}_{,}$ $\cdot t_i = h_{,}$,

$$h_{j} = \frac{4F_{0,} \cdot h_{j} \cdot K_{i}}{F_{j} \cdot I_{j}}$$

$$(23)$$

G

$$h = \frac{I}{F_{0,} \cdot h_{,i} \cdot K_{i}}$$

$$(24)$$

,

-

$$: \qquad I /2$$

$$: H_{K} = \frac{8 \cdot F_{0,} \cdot h_{,} \cdot K_{i}}{F_{i} + I_{i}} \qquad (25)$$

,

$$\begin{pmatrix} h_{c,i}/h \end{pmatrix} , \qquad \begin{pmatrix} h = h_{,i} \end{pmatrix} \\ G_{,i} & h_{,i} & t_i \\ \nabla_{,i}, & & , \end{cases}$$

$$, \qquad \qquad h_{,i}/h \qquad G_{,i}/G \qquad .$$

$$G \qquad \qquad G \qquad \qquad G \qquad .$$

$$h_{,i} \qquad t_i \qquad \qquad v_{,i},$$

$$. \qquad G/G_{,i} \qquad h/h_{,i} \qquad \qquad .$$

(20) (23),
$$F_{i} \cdot I_{i}$$
,

W = 0.5.

.

50%-

.

.

.

[2] [3].

0,83

.

Ι	15	0.25	0.33	0.5	1	0.25	0.33	0.5	1
α^{0}	-	15	19.5	30	90	15	19.5	30	90
v _{, /}	19	0.84	1.12	1.68	3.37	0.8 *	1.1 *	1.6*	3.3*
v , /	20	13.48	10.1	6.74	3.37	_	-	6.5	3.3
h ,	23	13.48	10.1	6.74	3.37	13.4	10	6.7	3.3

.

,

,

,

•) 3.37

 $h_{i} = h_{i}$

t_i ,	2
3,37	

1.		, .					.:
2.	• ,, , ,	1976. • •					
//			. 2007.	59.	3-4. 2007		
3.	//			20	08 60	1-2	
4.	• //			. 20			.:
		, 1952. 676 .					
5.			.: .	, 1	1952. 456		
6.				:		, 1950. 93	6.
		<u>:</u>					

,

[1-3]:

$$\frac{dU^{(1)}(x)}{dx} = \frac{T(x)}{E_{1}h} - \frac{P[u(x-a) - u(x+a)]}{E_{1}h} + \frac{P[u(x-b) - u(x+b)]}{E_{1}h} - \frac{Q[u(x-c) - u(x+c)]}{E_{1}h} - \infty < x < \infty$$
(1.1)

$$U^{(1)}(x) = \left[\begin{array}{c} & (-x-b) + \\ & (x+a) - \\ & (x-a) + \\ & (x-b) \end{array} \right] du^{(1)} / dx$$

$$T(x) = \left[\begin{array}{c} & (-x-b) + \\ & (x+a) - \\ & (x-a) + \\ & (x-b) \end{array} \right] \ddagger (x)$$
(1.2)

$$u^{(1)}(x) - \\ & , \\ & \ddagger (x) - \\ & , \\ & (x) - \end{array}$$

, u (x) -

,
$$u(x) - f(x)$$

$$\overline{f}(\dagger) = F[f(x)] = \int_{-\infty}^{\infty} f(x)e^{i\dagger x} dx$$

$$f(x) = F^{-1}[\overline{f}(\dagger)] = \frac{1}{2f} \int_{-\infty}^{\infty} \overline{f}(\dagger)e^{-i\dagger x} d\dagger$$

$$, \qquad , \qquad [1-5]:$$

$$u^{(1)}(x) - u^{(2)}(x, 0) = k^{\frac{1}{2}}(x) \quad x \in (-\infty, -h] \cup [-a, a] \cup [h + \infty) \qquad (1.3)$$

$$u^{(1)}(x) - u^{(2)}(x,0) = k^{\ddagger}(x), \ x \in (-\infty, -b] \cup [-a,a] \cup [b, +\infty)$$
(1.3)
:

$$U^{(1)}(x) = U^{(2)}(x) + kT^{*}(x)$$

$$(1.4)$$

$$T^{*}(x) = T^{*}(x) + kT^{*}(x) + kT^{*}($$

-

$$T^{*}(x) = T'(x) + \ddagger (a) [u(x+a) + u(x-a)] - \ddagger (b) [u(x-b) + u(x+b)]$$

$$\ddagger (a), \ \ddagger (b) - \ddagger (x) \qquad x = a \qquad x = b$$

$$\ddagger (-x) = -\ddagger (x), \ k = h_{k}/G_{k} \ , \ G_{k} = E_{k}/2(1+\xi_{k}), \qquad -x, \ u^{(2)}(x,0) - \cdots$$

,
$$y = 0$$

 $T(x)$,

$$\frac{du^{(2)}(x,0)}{dx} = U^{(2)}(x) + G_u(x) = \frac{1}{fA} \int_{-\infty}^{\infty} \frac{T(s)ds}{s-x}$$
(1.5)

$$U^{(2)}(x) = \left[\left[\left(-x - b \right) + \left(x + a \right) - \left(x - a \right) + \left(x - b \right) \right] du^{(2)} / dx \right]$$

$$G_{u}(x) = \left[\left[\left(x + b \right) - \left(x + a \right) + \left(x - a \right) - \left(x - b \right) \right] g_{u}(x) \right]$$

$$g_{u}(x) = du^{(2)} / dx, x \in (-b, -a) \cup (a, b)$$

$$A = 2G \left(1 - t^{2} \right), \quad t^{2} = (1 - 2\varepsilon) / 2 \left(1 - \varepsilon \right),$$

$$G - \qquad .$$
(1.6)

$$A^{*} = 8Gd/b_{1}^{*}(3-€), \quad d - , \quad (1.1) \quad h \\ F, \quad (1.4) - k \\ k^{*} = k/b_{1}^{*}, \quad b_{1}^{*} - , \quad (1.1), \quad (1.4) \quad (1.5)$$

$$(1.1), (1.4) \quad (1.5) \qquad \qquad ,$$

$$()^{2} + 2s|t| + t^{2})\overline{T}(t) = \frac{it}{k}\overline{G}_{u}(t) + 2i)^{2}P(\sin at - \sin bt) +$$

$$+2i)^{2}Q\sin ct - 2itt(a)\cos at + 2itt(b)\cos bt, \quad -\infty < t < \infty$$

$$(1.7)$$

$$\{ 2 = 1/kE_1h, S = 1/2kA, \overline{T}(\dagger) = F[T(x)]$$

$$(1.8)$$

$$(1.7) \}^2 \qquad \overline{\}}^2 = 1/k^*E_1F,$$

s $s^* = 1/2k^*A^*$.

(1.7).
§2.

$$\overline{T}(\dagger) = \frac{i\dagger \overline{G}_{u}(\dagger)}{k(\rbrace^{2} + 2s|\dagger| + \frac{1}{2})} + \overline{g}_{s}(\dagger), -\infty < \dagger < \infty$$
(2.1)

$$T(x) = -\frac{1}{k} \int_{-\infty}^{\infty} K'_{s}(x-s)G_{u}(s)ds + g_{s}(x), \quad -\infty < x < \infty$$
(2.2)

$$K_{s}(x) = F^{-1}\left[\bar{K}_{s}(\dagger)\right], \ T(x) = F^{-1}\left[\bar{T}(\dagger)\right], \ G_{u}(x) = F^{-1}\left[\bar{G}_{u}(\dagger)\right]$$

$$\bar{K}_{s}(\dagger) = \frac{1}{3^{2} + 2s|t| + t^{2}}, \ K_{s}'(x) = \frac{1}{2f} \int_{-\infty}^{\infty} \frac{-it e^{-it x} dt}{3^{2} + 2s|t| + t^{2}}$$
(2.3)
$$g_{s}(x) = F^{-1}\left[\bar{g}_{s}(\dagger)\right] = Q\}^{2}\left[K_{s}(x-c) - K_{s}(x+c)\right] +$$

$$+P\}^{2}\left[K_{s}(x-a) - K_{s}(x+a) + K_{s}(x+b) - K_{s}(x-b)\right] +$$

$$+t(a)\left[K_{s}'(x-a) + K_{s}'(x+a)\right] - t(b)\left[K_{s}'(x-b) + K_{s}'(x+b)\right] -$$

$$, \ T(x) = 0 \qquad x \in (-b, -a) \cup (a, b), \ G_{u}(x) = 0$$

$$x \notin (-b, -a) \cup (a, b), \ T(x) = t(x) \qquad x \in (-a, a)$$

$$t(-x) = -t(x), \ g_{u}(-x) = g_{u}(x), \qquad (2.2)$$

$$\vdots$$

$$\frac{1}{k} \int_{a}^{b} [K_{s}'(x-s) + K_{s}'(x+s)]g_{u}(s) ds = g_{s}(x), \qquad x \in (a, b)$$

$$(2.4)$$

$$\begin{aligned} \ddagger (x) &= -\frac{1}{k} \int_{a}^{b} [K'_{s}(x-s) + K'_{s}(x+s)] g_{u}(s) ds + g_{s}(x), \quad x \in (-a,a) \ (2.5) \\ (2.2) &: \\ T(x) &= -\frac{1}{k} \int_{a}^{b} [K'_{s}(x-s) + K'_{s}(x+s)] g_{u}(s) ds + g_{s}(x), \quad x \in (-\infty,\infty) \ (2.6) \end{aligned}$$

$$\int_{-}^{+} f(s) ds = 0, \quad \int_{-}^{\infty} T(s) ds = Q - P$$

$$g_{u}(x)$$
(2.7)
(2.4),

$$_{u}\left(x\right) \tag{2.4},$$

$$T(x) |x| < a$$
(2.5), $|x| > b -$ (2.6),
, (2.7).
, (2.7).

(2.4). (2.4)
$$\overline{K}_{s}(\dagger)$$
 [3-4]:

$$\overline{K}_{s}(\dagger) = \frac{1}{(b_{2} - b_{1})} \left(\frac{1}{b_{1} + |\dagger|} - \frac{1}{b_{2} + |\dagger|} \right)$$

$$K_{b_{j}}(x) = F^{-1}\left[\frac{1}{b_{j}+|\uparrow|}\right] = \frac{1}{f}\ln\frac{1}{|b_{j}x|} + R_{b_{j}}(x), \quad (j=1,2)$$

$$K_{b_{j}}'(x) = F^{-1}\left[\frac{-i\uparrow}{b_{j}+|\uparrow|}\right] = -\frac{1}{fx} + \frac{b_{j}}{2}\operatorname{sgn} x + R_{s_{j}}(x) \quad (2.8)$$

$$\vdots$$

$$K_{s}(x) = F^{-1} \left[K_{s}(\dagger) \right] = \frac{\chi}{f} \ln\left(\frac{b_{2}}{b_{1}}\right) + \chi R(x)$$

$$K_{s}'(x) = -\frac{1}{2} \operatorname{sgn} x + \chi R_{s}(x)$$
(2.9)

$$b_{1} = \frac{\frac{1}{s + \sqrt{s^{2} - \frac{1}{s}^{2}}}}{s + \sqrt{s^{2} - \frac{1}{s}^{2}}}, \quad b_{2} = \frac{\frac{1}{s - \sqrt{s^{2} - \frac{1}{s}^{2}}}}{s - \sqrt{s^{2} - \frac{1}{s}^{2}}}, \quad x = \frac{1}{b_{2} - b_{1}} = \frac{1}{2\sqrt{s^{2} - \frac{1}{s}^{2}}}$$

$$R(x) = R_{b_{1}}(x) - R_{b_{2}}(x), \quad R_{s}(x) = R_{s_{1}}(x) - R_{s_{2}}(x)$$

$$R_{b_{j}}(x) = -\frac{C}{f} + \sum_{k=1}^{\infty} (-1)^{k} \left[\frac{(b_{j}x)^{2^{k}}}{f(2k)!} \left(\ln \frac{1}{|b_{j}x|} + 1 + \frac{1}{2} + \dots + \frac{1}{2k} - C \right) - \frac{|b_{j}x|^{2^{k-1}}}{2(2k - 1)!} \right] \qquad (j = 1, 2)$$

$$R_{s_{j}}(x) = b_{j} \sum_{k=1}^{\infty} (-1)^{k} \left[\frac{(b_{j}x)^{2^{k-1}}}{f(2k - 1)!} \left(\ln \frac{1}{|b_{j}x|} + 1 + \dots + \frac{1}{2k - 1} - C \right) + \frac{(b_{j}x)^{2^{k}}}{2(2k)!} \operatorname{sgn} x \right] \qquad (j = 1, 2)$$

$$u(x) - \qquad , \quad C - \qquad .$$

$$, \qquad (2.9) \qquad R(x) \qquad R_{s}(x) \qquad R_{s}(x) \quad .$$

 $K_{\mathrm{s}}\left(x
ight) = K_{\mathrm{s}}'\left(x
ight),$

,

$$[-a,a]$$
 $[a,b]$.
 (2.9) , $K_s(x) -$,
 $x = 0$, $K_s(0) = (x/f) \ln(b_2/b_1)$. ,
 (2.3) (2.9) , $T(x)$ $x = \pm a, x = \pm b$
 $x = \pm c$.
, $(2.9),$ (2.4)

$$-\frac{1}{2}\int_{a}^{b} \left[\operatorname{sgn}(x-s)+1\right] g_{u}(s) ds + \chi \int_{a}^{b} \left[R_{s}(x-s)+R_{s}(x+s)\right] g_{u}(s) ds = kg_{s}(x), \quad x \in (a,b)$$

$$g_{u}(x) - X \int_{a}^{b} \left[R'_{s}(x-s) + R'_{s}(x+s) \right] g_{u}(s) ds = -kg'_{s}(x), \quad a < x < b \quad (2.10)$$

, [3]:

$$R'_{s}(x) = R'_{s_{1}}(x) - R'_{s_{2}}(x) = \frac{\left(b_{2}^{2} - b_{1}^{2}\right)}{f} \ln \frac{1}{|x|} + \tilde{R}(x)$$
 (2.11)

$$K_{s}''(x) = -\mathsf{U}(x) + \frac{2\mathsf{s}}{f} \ln \frac{1}{|x|} + \mathsf{X}\,\tilde{R}(x)$$
(2.12)

$$\tilde{R}'(x) = \frac{(b_1 - b_2)}{2} \operatorname{sgn} x + \overline{R}_2(x)$$

$$\tilde{R}(x) - \overline{R}_2(x)$$
[3], x .
(2.10)

$$\mathsf{x} \int_{a}^{b} \left| R'_{\rm s} \left(x - s \right) + R'_{\rm s} \left(x + s \right) \right| dx < 1$$
(2.13)
, $g_u(x)$ (2.3), (2.9) (2.12), x = a, x = b(2.10),|x| < a(2.5),(2.5),x = a(2.7).x = a $T(x) \qquad |x| < a ,$ x > b, x = b, x > b(2.6)(2.6) e x = b $\overline{K}_{s}(\dagger)$ - (2.7). , (2.1) - $|\dagger| \rightarrow 0,$, $T(x) = F^{-1}\left[\overline{T}(\dagger)\right]$ $|x| \rightarrow \infty$ $\left(x^{-3}\right)$. 1. . 2007. 2. . 35-44. . // 2. . 2008. .61. 1. .37-47. .// 3. _ .// . . 2008. 3. 4. . // .

 Lubkin J.L. and Lewis L.C. Adhesive shear flow for an axially loaded, finite stringer bounded to an infinite sheet. // Quart J. of Mech. and Applied Math. Vol. XXIII, 1970, p. 521.

:

$$D\Delta^{4}W - \sum_{i=1}^{k} \prod_{ad} U(x - x_{i}) \frac{\partial^{2} \{}{\partial y^{2}} - \sum_{j=1}^{k} \prod_{bd} U(y - y_{i}) \frac{\partial^{2} \{}{\partial x^{2}} + ph \frac{\partial^{2} W}{\partial t^{2}} = 0$$

$$\frac{1}{Eh} \nabla^{4} \{ + \sum_{i=1}^{k} \prod_{ad} U(x - x_{i}) \frac{\partial^{2} W}{\partial y^{2}} - \sum_{j=1}^{\ell} \prod_{bd} U(y - y_{i}) \frac{\partial^{2} W}{\partial x^{2}} = 0$$

$$x = 0, x = a \quad w = 0, \quad \frac{\partial^{2} W}{\partial x^{2}} = 0, \quad T_{x} = \frac{\partial^{2} \{}{\partial y^{2}} = 0, \quad T_{xy} = -\frac{\partial^{2} \{}{\partial x \partial y} = 0$$

$$y = 0, \quad y = b \quad w = 0, \quad \frac{\partial^{2} W}{\partial y^{2}} = 0, \quad T_{y} = \frac{\partial^{2} \{}{\partial x^{2}} = 0, \quad T_{xy} = -\frac{\partial^{2} \{}{\partial x \partial y} = 0$$

$$y = 0, \quad y = b \quad w = 0, \quad \frac{\partial^{2} W}{\partial y^{2}} = 0, \quad T_{y} = \frac{\partial^{2} \{}{\partial x^{2}} = 0, \quad T_{xy} = -\frac{\partial^{2} \{}{\partial x \partial y} = 0$$

$$y = 0, \quad y = b \quad w = 0, \quad \frac{\partial^{2} W}{\partial y^{2}} = 0, \quad T_{y} = \frac{\partial^{2} \{}{\partial x^{2}} = 0, \quad T_{xy} = -\frac{\partial^{2} \{}{\partial x \partial y} = 0$$

$$(2)$$

$$W(x, y, t) = W_{mn} \sin \tilde{S}_{mn} t \sin r_{m} x \sin_{n}^{s} y$$

$$\{ (x, y, t) = V_{mn} \sin \tilde{S}_{mn} t \sin r_{m} x \sin_{n}^{s} y$$

$$(3)$$

$$(1)$$

•••

•

,

,

х,

-

,

·

•••,

,

•

,

,

, .__

 $w_{mn} \{ mn [2]:$

$$D(\Gamma_{m}^{2} + S_{n}^{2})^{2}W_{mn} + \left(S_{n}^{2}\overset{H}{x} + \Gamma_{m}^{2}\overset{H}{x_{y}}\right)\{_{mn} - ph\breve{S}_{mn}^{2}W_{mn} = 0$$

$$ph\breve{S}_{mn}^{2}\frac{1}{Eh}(\Gamma_{m}^{2} + S_{n}^{2})^{2}\{_{mn} - \left(S_{n}^{2}\overset{H}{x_{x}} + \Gamma_{m}^{2}\overset{H}{x_{y}}\right)W_{mn} = 0$$
(4)

:

$$ph\check{S}_{mn}^{2}\frac{1}{Eh}(\Gamma_{m}^{2}+S_{n}^{2})^{2}-\frac{1}{Eh}D(\Gamma_{m}^{2}+S_{n}^{2})^{4}-\left(S_{n}^{2}\frac{H}{X_{x}}+\Gamma_{m}^{2}\frac{H}{X_{y}}\right)^{2}=0$$

:

$$\tilde{S}_{mn}^{2} = \frac{1}{ph} \left[D \left(\Gamma_{m}^{2} + S_{n}^{2} \right)^{2} + \frac{Eh}{\left(\Gamma_{m}^{2} + S_{n}^{2} \right)^{2}} \left(S_{n}^{2} x_{x}^{H} + \Gamma_{m}^{2} x_{y}^{H} \right)^{2} \right] \quad (5)$$

[3]. .1
$$\hat{S}_{m1}$$

 $m(n=1)$,

,

 $\check{\mathsf{S}}_{\scriptscriptstyle 1m}$

.1.

•

- 254 -

(.1) ,

,

,

•

,

$$(k = \ell = 2)$$
 19%

, $m = 5 \quad (k = \ell = 2)$ 11%.

.

 $(m, n = 1, 2, 3, \dots)$ W_{mn}

$$W_{mn} = \frac{1}{ph} \frac{q_{mn}}{\left(\tilde{S}_{mn}^2 - \Omega^2\right)}$$
(6)
$$\tilde{S}_{mn}^2$$

 $q_{\scriptscriptstyle mn}$

(5),

:

Ω -

$$A = \frac{W_{mn}}{W_{mn}^{cm}} = \frac{1}{1 - \frac{\Omega^2}{\tilde{S}_{mn}^2}}$$
(7)

(7)

,

(1) .

$$q = 2 ph \check{\mathsf{S}} \frac{\partial w}{\partial t}, \qquad \mathsf{V} = \mathsf{коэ} \phi \phi \mathsf{иц} \mathsf{u} \mathsf{e} \mathsf{н} \mathsf{T}$$
 демпфиро-

вания, определяемый экспериментально. Решение этой задачи привело к обыкновенному дифференциальному уравнению:

$$\frac{d^2 W_{mn}}{dt^2} + 2v \frac{d W_{mn}}{dt} + \tilde{S}_{mn}^2 W_{mn} = \frac{q_{mn}}{ph} \sin \Omega t$$
(8)

решение которого имеет вид:

- 255 -

$$W_{mn}(t) = \ell^{-\nu t} \left[W_{mn}^{\circ} \cos\left(t\sqrt{\tilde{S}_{mn}^{2} - \nu^{2}}\right) + \frac{\nu^{0} + \nu W_{mn}^{0}}{\sqrt{\tilde{S}_{mn}^{2} - \nu^{2}}} \sin\left(t\sqrt{\tilde{S}_{mn}^{2} - \nu^{2}}\right) \right] + \frac{q_{mn}}{ph} \frac{\tilde{S}_{mn}^{2} - \Omega^{2}}{\left(\tilde{S}_{mn}^{2} - \Omega^{2}\right)^{2} + 4\nu^{2}\Omega^{2}} \sin\Omega t - \frac{q_{mn}}{ph} \frac{2\nu\Omega^{2}}{\left(\tilde{S}_{mn}^{2} - \Omega^{2}\right)^{2} + 4\nu^{2}\Omega^{2}} \cos\Omega t$$
(9)

Динамический коэффициент вынужденных колебаний демпфированной оболочки, определяемый отношением параметра амплитуды вынужденных колебаний к параметру статического прогиба, определяется выражением:

$$A = \frac{1}{\sqrt{\left(1 - 2^{2}\right)^{2} + K^{2} - 2^{2}}}$$
(10)

где введены обозначения для отношения часто
т $\sim = \Omega/\check{\rm S}_{mn}$ и $K = 2 {\rm V}/\check{\rm S}_{mn}$.

· · ·,

: 0175, , . . , 77 .:(995 32) 34 25 71 E-mail: <u>gelakip@yahoo.com</u>

:

. . ,

: 0175, , . . , 77 .: (995 32) 95 67 70 E-mail: <u>gelakip@yahoo.com</u>

.: (995 32) 63 01 71 E-mail: <u>gng@posta.ge</u>

r,",z

•

,

,

.

•

•

[3], [4],

h,

•

•

•

[2]:

$$u_{r} = u + z \cdot \{ , u_{z} = v + z \cdot \mathbb{E} , u_{z} = w$$

$$u_{r}, u_{z}, u_{z} -$$

$$r, u, z, ..., u, v, w$$

$$z = 0. \qquad \{ \mathbb{E} \}$$

$$R_{1} = \frac{R^{+} - R^{-}}{2}, R_{2} = R^{+} + R^{-}, _{\#_{1}} = \frac{\pi^{+} - \pi^{-}}{2}, Z_{2} = Z^{+} + Z^{-}$$
(1.2)
$$R^{-} \cdot R^{+} \cdot \pi^{-} \cdot \pi^{+} \cdot Z^{-} \cdot Z^{+} =$$

,

$$r, , , z$$
. "+" $z = +\frac{h}{2}$,

"-" -
$$z = -\frac{h}{2}$$
.

(1.1) [1]:

$$e_{rz} = \left\{ + \frac{\partial w}{\partial r}, e_{rz} = \mathbb{E} + \frac{1}{r} \frac{\partial w}{\partial_{u}} \right\}$$

$$\dagger_{r} = B_{11} \frac{\partial u}{\partial r} + B_{12} \frac{1}{r} \left(u + \frac{\partial v}{\partial_{u}} \right) + z \left[B_{11} \frac{\partial \{}{\partial r} + B_{12} \frac{1}{r} \left(\{ + \frac{\partial \mathbb{E}}{\partial_{u}} \} \right) \right]$$

$$(1.3)$$

	•	[3]

_

-

[4],

, [5].

,

[1], , (1.4) \ddagger_{rz} \ddagger_{z} ,

$$\begin{aligned} \ddagger_{rz}^{+} &= R^{+}, \ddagger_{rz}^{-} = -R^{-}, \ddagger_{zz}^{+} = \prod^{+}, \ddagger_{zz}^{-} = -\prod^{-} \end{aligned}$$
(1.6)
$$, \qquad \int_{-\frac{h}{2}}^{+\frac{h}{2}} \ddagger_{rz} dz = N_{r}, \qquad \int_{-\frac{h}{2}}^{+\frac{h}{2}} \ddagger_{zz} dz = N_{r}, \qquad :$$

$$\ddagger_{rz}^{-} = \frac{3N_{r}}{2h} \left(1 - \frac{4z^{2}}{h^{2}} \right) - \frac{R_{1}}{2} \left(1 - \frac{12z^{2}}{h^{2}} \right) + \frac{z}{h} R_{2}$$

$$\ddagger_{zz}^{-} = \frac{3N_{r}}{2h} \left(1 - \frac{4z^{2}}{h^{2}} \right) - \frac{\pi_{1}}{2} \left(1 - \frac{12z^{2}}{h^{2}} \right) + \frac{z}{h} \pi_{2}$$
(1.7)

, , .

$$\ddagger_{rz}^{(1)} = \frac{3N_r^{(1)}}{2h} \left(1 - \frac{4z^2}{h^2}\right), \ \ddagger_{zz}^{(1)} = \frac{3N_z^{(1)}}{2h} \left(1 - \frac{4z^2}{h^2}\right)$$
(1.8)

,

,

$$e_{rz} = \frac{3N_r}{2B_{55}h} \left(1 - \frac{4z^2}{h^2}\right) - \frac{R_1}{2B_{55}} \left(1 - \frac{12z^2}{h^2}\right) + \frac{z}{B_{55}h}R_2$$

$$e_{zz} = \frac{3N_z}{2B_{44}h} \left(1 - \frac{4z^2}{h^2}\right) - \frac{\pi_1}{2B_{44}} \left(1 - \frac{12z^2}{h^2}\right) + \frac{z}{B_{44}h}\pi_2 \qquad (1.9)$$

$$B_{55} \quad B_{44} - zOr \quad zO_r \quad zO$$

$$\int_{v} \left\{ \frac{3N_{r}^{(1)}}{2h} \left(1 - \frac{4z^{2}}{h^{2}} \right) \left[\frac{3N_{r}}{2B_{55}h} \left(1 - \frac{4z^{2}}{h^{2}} \right) - \frac{R_{1}}{2B_{55}} \left(1 - \frac{12z^{2}}{h^{2}} \right) + \frac{z}{B_{55}h} R_{2} \right] + \frac{3N_{r}^{(1)}}{2h} \left(1 - \frac{4z^{2}}{h^{2}} \right) \left[\frac{3N_{r}}{2B_{44}h} \left(1 - \frac{4z^{2}}{h^{2}} \right) - \frac{\pi_{1}}{2B_{44}} \left(1 - \frac{12z^{2}}{h^{2}} \right) + \frac{z}{B_{44}h} \pi_{2}^{2} \right] \right\} dv \quad (1.10)$$

$$v - \qquad , \qquad (1.10)$$

$$\int_{S} \left(\frac{N_{r}^{(1)} N_{r}}{G_{55} h} K_{r} + \frac{N_{r}^{(1)} N_{r}}{G_{44} h} K_{r} \right) ds$$

$$S - K_{r}$$
(1.11)

K,

$$K_{r} = \frac{6}{5} - \frac{R_{1}h}{5N_{r}}, K_{r} = \frac{6}{5} - \frac{\pi_{1}h}{5N_{r}}$$

$$, R_{2} = \pi_{2}$$

$$K_{r} = K_{r}$$

$$K_r = K_{r} = 1$$
 (1.13)
, (1.12) , ...

•

$$N_r = \frac{-2}{6} \left[\left\{ +\frac{\partial N}{\partial r} \right] + \frac{\partial P}{6}, N_r = \frac{\partial P_{44}}{6} \left[\left(\mathbb{E} + \frac{\partial N}{r} \right) + \frac{\partial P}{6} \right] \right]$$
(1.15)

2.

)

$$[1]:$$

$$\frac{\partial N_r}{\partial r} + \frac{1}{r} \frac{\partial N_r}{\partial_u} + \frac{1}{r} N_r = -Z_2, \quad \frac{\partial M_r}{\partial r} + \frac{1}{r} \frac{\partial M_{r_r}}{\partial_u} + \frac{1}{r} \left(M_r - M_r \right) = N_r - hR_1$$

$$\frac{\partial M_{r_r}}{\partial r} + \frac{1}{r} \frac{\partial M_r}{\partial_u} + \frac{2}{r} M_{r_r} = N_r - h_{u_1} \qquad (2.1)$$

$$(1.5) \qquad (1.15) \qquad (2.1),$$

$$\left\{ \begin{array}{l} \mbox{,} \mathbb{E} \ , w : \\ B_{55} \left(\frac{\partial \{}{\partial r} + \frac{\partial^2 w}{\partial r^2} \right) + \frac{B_{44}}{r} \left(\frac{\partial \mathbb{E}}{\partial_{y}} + \frac{1}{r} \frac{\partial^2 w}{\partial_{y}^2} \right) + \frac{B_{55}}{r} \left(\left\{ + \frac{\partial w}{\partial r} \right) = \\ = -\frac{1}{5} \left(\frac{6Z_2}{h} + \frac{\partial R_1}{\partial r} + \frac{1}{r} \frac{\partial_{y_1}}{\partial_{y}} + \frac{R_1}{r} \right) \\ D_{11} \frac{\partial^2 \{}{\partial r^2} + \frac{D_{66}}{r^2} \frac{\partial^2 \{}{\partial_{y}^2} + \frac{D_{12} + D_{66}}{r} \frac{\partial^2 \mathbb{E}}{\partial r \partial_{y}} + \frac{D_{11}}{r} \frac{\partial \{}{\partial r} - \frac{D_{22} + D_{66}}{r^2} \frac{\partial \mathbb{E}}{\partial_{y}} - \\ - \left(\frac{D_{22}}{r^2} + \frac{5}{6} B_{55} h \right) \left\{ - \frac{5}{6} B_{55} h \frac{\partial w}{\partial r} = -\frac{5}{6} h R_1 \right.$$
(2.2)
$$\frac{D_{22}}{r^2} \frac{\partial^2 \mathbb{E}}{\partial_{y}^2} + D_{66} \frac{\partial^2 \mathbb{E}}{\partial r^2} + \frac{D_{12} + D_{66}}{r} \frac{\partial^2 \{}{\partial r \partial_{y}} + \frac{D_{66}}{r} \frac{\partial \mathbb{E}}{\partial r} + \frac{D_{22} + D_{66}}{r^2} \frac{\partial \{}{\partial_{y}} - \\ \left(\frac{D_{66}}{r^2} + \frac{5}{6} B_{44} h \right) \mathbb{E} - -\frac{5}{6} B_{44} \frac{h}{r} \frac{\partial w}{\partial_{y}} = -\frac{5}{6} h_{y_1} \\ (2.2) \end{array} \right\}$$

.

r = const:

:
$$D_{11}\frac{\partial \{}{\partial r} + D_{12}\frac{1}{r}\left(\{ +\frac{\partial \mathbb{E}}{\partial_{u}}\right) = 0, \ \left(M_{r}=0\right)\frac{1}{r}\frac{\partial \{}{\partial_{u}} + \frac{\partial \mathbb{E}}{\partial r} - \frac{\mathbb{E}}{r} = 0$$

$$\left(M_{r_{r}}=0\right), \ 5B_{55}\left(\left\{+\frac{\partial w}{\partial r}\right\}+R_{1}=0, \ \left(N_{r}=0\right)\right)$$

$$(2.3)$$

(2.3)
$$w = 0.$$

) :
 $\{=0, \mathbb{E} = 0, w = 0$ (2.4)

 $_{''} = \text{const}$.

,

,

(2.2)

[2],

,

(2.3).

 $N_r = N_r$.

,

..., ... 24 ,0019, ... (+37410)52-48-90

:

,

. .- . .,

: . 1, . , : (+37410)57-51-40 (), (+37410) 55-90-96 (.) E-mail: <u>SEYRANSTEP@yahoo.com</u>

,

,

,

,

,

$$\mathbf{L} = \mathbf{L}^{e} + \mathbf{L}^{p}$$

$$\mathbf{L} = \dot{\mathbf{F}}\mathbf{F}^{-1} - , \quad \mathbf{L} = \dot{\mathbf{E}}\mathbf{E}^{-1} \quad \mathbf{L}^{p} - ,$$
(1)
(1)

.

.

$$\mathbf{F} = \mathbf{E}\mathbf{P}$$
(2)
$$\mathbf{L}^{p} = \frac{D}{Dt}\mathbf{A}^{p} = \frac{d\Lambda}{dt}\mathbf{s}$$

$$\mathbf{A}^{p} - , \quad D/Dt -$$

$$\frac{D\mathbf{A}^{p}}{Dt} = \frac{d}{dt}\mathbf{A}^{p} + \mathbf{A}^{p}\mathbf{L}_{R} + \mathbf{L}_{R}\mathbf{A}^{p}, \quad \mathbf{L}_{R} = \dot{\mathbf{R}}\mathbf{R}^{-1}, \quad \mathbf{F} = \mathbf{R}\mathbf{U}$$
(3)
$$\mathbf{U} - , \quad \mathbf{R} - , \quad \mathbf{K} - , \quad \mathbf{F}$$

$$\frac{dx_i}{dt} = \frac{x_i^{n+1} - x_i^n}{\Delta t} = \hat{\mathbf{i}}_i^{n+1/2}$$

$$\mathbf{A}^{n+1} = \frac{1}{2} \left(\mathbf{I} - \mathbf{F}^{-T} \mathbf{F}^{-1} \right)^{n+1}$$

$$\vdots$$

$$\mathbf{L}_R = \dot{\mathbf{P}} \mathbf{P}^{-1} = 0, \qquad \mathbf{P}^{n+1} = \mathbf{P}^n.$$

$$\mathbf{F}^{n+1} = \mathbf{\tilde{E}}^{n+1} \mathbf{P}^n, \quad \mathbf{\tilde{E}}^{n+1} = \mathbf{F}^{n+1} \left(\mathbf{P}^n \right)^{-1}$$

$$\left(\mathbf{\tilde{A}}^e \right)^{n+1} = \frac{1}{2} \left(\mathbf{I} - \mathbf{\tilde{E}}^{-T} \mathbf{\tilde{E}}^{-1} \right)^{n+1} = \frac{1}{2} \left[\mathbf{I} - \left(\mathbf{P}^n \right)^{-T} \left(\mathbf{\tilde{F}}^{n+1} \right)^{-T} \left(\mathbf{\tilde{F}}^{n+1} \right) \left(\mathbf{P}^n \right) \right]$$

$$\mathbf{\tilde{E}}^{n+1}$$

$$\mathbf{\tilde{\sigma}}$$

$$\left(\mathbf{\uparrow}^{e}\right)^{n+1} = \left(\frac{\partial \overline{\Phi}}{\partial \mathbf{A}^{e}}\right)^{n+1} \tag{4}$$

, (4).

$$\mathbf{L} = \mathbf{F}\mathbf{F}^{-1} = 0,$$

$$\mathbf{F} = 0, \quad \mathbf{R}\mathbf{U} + \mathbf{R}\mathbf{U} = 0, \quad \mathbf{R}\mathbf{R}^{-1} + \mathbf{R}\mathbf{U}\mathbf{U}^{-1}\mathbf{R}^{-1} = 0$$

$$\mathbf{R} - , \quad \mathbf{U} - .$$

$$, \quad \mathbf{L}_{R} = 0 \qquad D/Dt \equiv d/dt.$$
(5)

. (5) ,
$$\mathbf{L}_{R} = \dot{\mathbf{R}}\mathbf{R}^{-1} = 0$$
. , $\mathbf{L}_{R} = \mathbf{L}_{R}$

•

-

-

$$\mathbf{L}_{R} = (\mathbf{R}\mathbf{R}^{-1})^{T} = \mathbf{R}^{-T}\mathbf{R}^{-T} = \mathbf{R}(\mathbf{R}^{-1})^{T} = -\mathbf{R}\mathbf{R}^{-1}\mathbf{R}\mathbf{R}^{-1} = -\mathbf{R}\mathbf{R}^{-1}$$
$$\mathbf{U}\mathbf{U}^{-1} - , \quad \dots \quad \mathbf{U} = \mathbf{U}^{T} \quad \mathbf{U}^{-1} = \mathbf{U}^{-T}$$
$$(\mathbf{\dot{U}}\mathbf{U}^{-1})^{\bullet} = \mathbf{U}^{-T}\mathbf{\dot{U}}^{-T} = \mathbf{U}^{-1}\mathbf{\dot{U}} = \mathbf{\dot{U}}\mathbf{U}^{-1}$$
$$\mathbf{U} \quad \mathbf{U}^{-1}$$

, ,

$$\left(\mathbf{U}\mathbf{U}^{-1}\right)^{\bullet} = 0:$$
$$\mathbf{U}^{-1}\mathbf{\dot{U}} - \mathbf{\dot{U}}\mathbf{U}^{-1} = 0$$
(5)

$$\mathbf{L}_R = \mathbf{R}\mathbf{R}^{-1} = \mathbf{0}$$

•

•

$$\frac{D\dagger}{Dt} = \frac{d\dagger}{dt} = \frac{d^2\Phi}{d(\mathbf{A}^e)^2} \frac{d\mathbf{A}^e}{dt} = \frac{d^2\Phi}{d(\mathbf{A}^e)^2} \mathbf{L}^e = -\frac{d^2\Phi}{d(\mathbf{A}^e)^2} \mathbf{L}^p = -\frac{d^2\Phi}{d(\mathbf{A}^e)^2} \frac{d\Lambda}{dt} \dagger \quad (6)$$

$$\begin{aligned}
\mathbf{v}^{e} &= \frac{\partial \Phi^{-1}(\dagger)}{\partial \dagger} \\
d^{2} \Phi &= \sim (\dagger) (d \mathbf{A}^{e})^{2} \\
(6)
\end{aligned}$$
(6)
(7)

$$\frac{d\dagger}{d\Lambda} = -\gamma_{ijkl} \left(\dagger\right) \dagger_{kl} \,. \tag{8}$$

•

 t_i

$$\begin{cases} \frac{d\dagger_{ij}}{d\Lambda} = \frac{d^2 \Phi}{\left(d\mathbf{A}^e\right)^2} \dagger_{ij} = \sim_{ijkl} (\dagger) \dagger_{kl} \\ \frac{d\mathtt{t}_i}{d\Lambda} = f_i (\mathtt{t}_i, \dagger_{ij}) \end{cases}$$
(9)

 $\Delta\Lambda$

•

•

(9)

•

,

•

_

,

,

,

$$\begin{cases} \frac{\dagger \prod_{ij}^{n+1} - \dagger \prod_{ij}^{n}}{\Delta \Lambda} = \sim_{ijkl} \left(\dagger \prod_{ij}^{n} \right) \dagger \prod_{kl}^{n+1} \\ \frac{\dagger \prod_{i}^{n+1} - \dagger \prod_{i}^{n}}{\Delta \Lambda} = \left(\frac{\partial f_i}{\partial \dagger _{kl}} \right)^n \dagger \prod_{kl}^{n+1} + \left(\frac{\partial f_i}{\partial \dagger _{k}} \right)^n \dagger \prod_{kl}^{n+1} \end{cases}$$

2.

,

,

()

•

•

•

:

,

;)

-. 1. I D -2,

;)

,

[6].

,

,

[4, 5],

,

.

 $p_{\rm max}$

$$p(t) = p_{\max} \left[t^* / \left(t_p + t \right) \right]^3$$

$$t^*, t_p -$$

 $T^*, t_p -$
 $T^*, t_p -$
 T^*, t_{p-1}
 T^*, t_{p-1}

, 2.
$$t_1 = 0; t_2 = 13.8t_0, V_{z0} = 0.37c_1; t_3 = 50.4t_0, V_{z0} = 0.35c_1.$$

$$x = 0$$
 (), $x = 2$, $x = 4$.
 $r = 30^{\circ}$ $t = 11.9t_0$,

,

:

,

,

,

 $t_0 \ \ -$

().

,

 $t \ge 10t_0$

,

$$r = 60^{\circ}, \quad 2h/D_{0} = 0.1, \quad p_{max} = 167K_{so}, \quad \}_{0}/K_{so} = 483,$$

$$\sim_{0}/K_{so} = 207, \quad : a) K_{s} = 0.3K_{so},$$

$$K_{so} = K_{so}, \quad K_{so} = K_{so}, \quad K_{so} = 0.1, \quad K_{so} =$$

1. . // . 2004. 1. .98-108. . . 2. // . . . 2006. 6. .103-135. 3. . ., . . , . .: 280. 1986. 68 . . 4. // . . . 1957. .12. .4. .41-56. . 5. . . 1979. .247. 5. .1082-// . 1085. , 1975. 704 . 6. . .: . . 7. . . _ ... // .: ». .: _ « , 1984. . 65-86. :

· .- · .,

,

(: 119526, , , , - 101, .1, .: +7-495-434-46-39 : +7-499-739-95-31 E-mail: kukudz@ipmnet.ru http://ipmnet.ru/~kukudz)

60-

1.

,

,

,),

V.

,

,

,

,

,

,

,

$$\begin{bmatrix} 1 \end{bmatrix} (, , \\ \vdots \\ (\dots_{1} + \dots_{12}) \dot{v}_{i}^{(1)} = \dagger_{ij,j}^{(1)} + K(u_{i}^{(2)} - u_{i}^{(1)}) + l(v_{i}^{(2)} - v_{i}^{(1)}) + \dots_{12} \dot{v}_{i}^{(2)} \\ (\dots_{2} + \dots_{12}) \dot{v}_{i}^{(2)} = \dagger_{ij,j}^{(2)} + K(u_{i}^{(1)} - u_{i}^{(2)}) + l(v_{i}^{(1)} - v_{i}^{(2)}) + \dots_{12} \dot{v}_{i}^{(1)} \\ \dot{u}_{i}^{(r)} = v_{i}^{(r)} \\ \dot{u}_{i}^{(r)} = v_{i}^{(r)} \\ \uparrow \\ \vdots \\ \dagger_{ij}^{(r)} = L_{ijkl}^{(r)} \left[\frac{1}{2} \left(v_{k,l}^{(r)} + v_{l,k}^{(r)} \right) - H(r) \dot{v}_{kl}^{(r)p} \right] \\ \dot{i}, j = 1,2,3 \\ i, j = 1,2,3 \\ \end{bmatrix}$$

$$\begin{cases} 0, & S^{(1)} < k_m (I^{(1)p}) \\ \frac{1}{t_{0m}} \frac{\left\{ m \left(\frac{S^{(1)} - k_m (I^{(1)p})}{k_m^{(0)}} \right) \right\} \\ S^{(1)} \\ S^{(1)} \\ S^{(1)} \\ S^{(1)} \\ \end{bmatrix} \\ K, l, \dots_{12} = \begin{cases} K^e, 0, \dots_{12}^e - S^{(1)} < k_m (I^{(1)p}) \\ K^p, l, \dots_{12}^p - S^{(1)} \ge k_m (I^{(1)p}) \\ H(r) = \begin{cases} 1, & r = 1 \\ 0, & r = 2 \end{cases} \\ \mathbf{u}_{i}^{(r)} - & \alpha \\ \\ S^{(l)} - & s_{ij}^{(l)} \\ \end{cases} \\ \end{cases}$$

, .

.

-

,

,

:

•

,

,

,

•

,

, ,

- 273 -

 $(), \ k_m(I^{(1)p}) - ,$ $\downarrow_{0m} - ,$ $\dots_{\Gamma}, \ L^{(\Gamma)}_{ijkb} \dots _{12}, \dots _{12} \ l \ K^e, \ K^p \qquad s_{ij}^{(1)} -$

[2],

2.

(

,

,

)

c k,

- 274 -

k

(

([11]), $; \eta_f = 0.54, \eta_m = 0.46, E^{(f)} = 379.2 , E^{(m)} = 0.5$, $v^{(f)} = 0.18, v^{(m)} = 0.40, \rho_f = 2.68$ / ${}^3, \rho_m = 1.26$ / ${}^3, r_f = 0.1016$, $r_m = 0.138$

: $\eta_f = 0.221$, $\eta_m = 0.779$, $E^{(f)} = 400.0$, $E^{(m)} = 71.0$, $v^{(f)} = 0.28$, $v^{(m)} = 0.34$, $\rho_f = 19.19$ / ³, $\rho_m = 2.44$ / ³, $h_f = 0.0625$, $h_m = 0.158$.

2.3.

(f) (m), ; $\eta_f = 0.022$, $\eta_m = 0.978$, $E^{(f)} = 400.0$, $E^{(m)} = 71.0$, $v^{(f)} = 0.28$, $v^{(m)} = 0.345$, $\rho_f = 19.19$ / ³, $\rho_m = 2.70$ / ³, $h_f = 0.0625$, $h_m = 0.424$.

, [4]. 3. 3.1. *l* = 0,358 , Ζ. . . ((2.54) $v_0 = 0.0567$ /). $\delta=0.64 \quad , E=100.6 \quad , G=41.8 \quad , \rho=2.77 \ / \ ^3,$ t = 0 $v_z = 0.0283$ / , k_m(ε) $\mu_0^{(m)}$). ([2]12, .2.2, : $k_m(0)=0.065$, $\mu_0^{(m)}=5.48$, $\tau_0^{(m)}=1.5$. . 4. , [4] (

[5,6] , (

),

,

)

,

- 277 -

2

- 278 -

t = 1.70 - 1.95 (.4)

$$\begin{array}{c} \sigma = k_m(\varepsilon), \\ 3.3. \\ 54.0 \\ = 0.063 \\ , h_m = 0.159 \\ \end{array}, \begin{array}{c} , \\ \mu^{(m)} = 29.0 \\ , \mu^{(m)} = 29.0 \\ , \mu_0^{(m)} = 5.8 \\ , \mu_0^{(m)} = 5.8 \\ , \tau_0^{(m)} = 1.0 \\ \end{array}, \begin{array}{c} , \\ \lambda^{(m)} = 256.0 \\ , \mu_0 = 256.0 \\ , \mu_0 = 256.0 \\ , \mu_0 = 2.44 \\ , \lambda^{(m)} = 1.0 \\ , \lambda$$

- 279 -

:

.6,

. 6

- 280 -

1. . . // . , , , 2001. 5. . 74-86. 2. . , , 1997. 4. . 87-98. // 3. , . // (). . . 1972. 1. .97-102. 4. , . // (. .). 1973. .40, 1. .157-164. 5. . // .67. .111-118. . ., 2006. • 6. // 2007. 1. . 165-173.

.

.

,

-

. .- . ,

,

,

: , , , . , , 101, : .+7495 434-46-39 -mail: <u>kconstantin@mail.ru</u>

:

[1,2].

XX

(Johnson-Cook) (1),

:

$$\dagger_{Y}\left(\overline{\mathbf{v}}^{pl}, \overline{\mathbf{v}}^{pl}, \mathbf{w}\right) = \left[A + B\left(\overline{\mathbf{v}}^{pl}\right)^{n}\right] \left[1 + C\ln\left(\frac{\mathbf{v}^{pl}}{\overline{\mathbf{v}}_{0}}\right)\right] \left(1 - \mathbf{w}^{m}\right)$$
(1)

$$\uparrow_{Y} - , \nabla^{pl} - , m_{melt} \cdot , \nabla^{pl} - , \nabla^{pl} - , m_{melt} \cdot , m_{melt} \cdot , \nabla^{pl} - , \nabla$$

Al2024-T3 (: E = 73 , $\in = 0.33$; -: A = 369 , B = 684 , n = 0.73, $V_0 = 5.77E-04$, C = 0.0083, m = 1.7, "transition = 300 K, "melt = 775 K; S = 0.9) 42CrMo4 (: E = 202 a, $\in = 0.3$; : A = 612 , B = 436 , n = 0.15, $V_0 = 5.77E-04$, C = 0.008, m = 1.46, "transition = 300 K, "melt = 600 K; S = 0.9).

,

. 2.

•

(

)

(.3).

42CrMo4,

)

,

(. 4).

()

•

. 4. () 42CrMo4, 90°; () Al2024-T3, 5.

()

, (.5)

. 5).

),

(

1

).

(

(

. 5.

,

42CrMo4, 90°. 1– 2–

. 6.

,

Al2024-T3.

(. 6)

(06-01-00523).

- 1. Shaw M.C. A quantized theory of strain hardening as spplied to cutting of metals, Journal of Applied Physics, 21, June, 1950, 599-606.
- 2. Shaw M.C. Metal cutting principles. Oxford Science Publications, New York, 1997.
- 3. Liu K., Melkote S.N. Material strengthening mechanisms and their contribution to size effect in micro-cutting // ASME Transactions Journal of Manufacturing Science and Engineering, 128 (3), 2006, pp. 730-738.
- 4. Miguélez H., Zaera R., Rusinek A., Moufki A. and Molinari A., Numerical modelling of orthogonal cutting: Influence of cutting conditions and separation criterion // J. Phys France, 2006, 134, 417-422.

: 119526, , .: +7-916-389-40-13 : +7-499-739-95-31 E-mail: <u>alex_lev@ipmnet.ru</u>

:

() 101, .1,
[1, 2] 1.

,

,

$$\dagger_{x},\dagger_{y},\ddagger_{xy} \qquad \qquad xy.$$

,

,

$$f(\dagger, J) = |, | - \text{const}$$
(1.1)
$$\dagger, J = -$$

$$\dagger = \frac{1}{2} (\dagger_x + \dagger_y), \quad J = \sqrt{(\dagger_x - \dagger_y)^2 + 4 \ddagger_{xy}^2}$$
(1.2)

$$\dagger = \frac{1}{2} (\dagger_{x} + \dagger_{y}), \quad J = \sqrt{(\dagger_{x} - \dagger_{y})^{2} + 4 \ddagger_{xy}^{2}}$$
(1.2)

,

,

•

-

$$f(\dagger, J) = \frac{\partial f}{\partial \dagger} \dagger + \frac{\partial f}{\partial J} J = |$$
(1.3)

,

(1.1)

,

$$V_{x} = \left\{ \frac{1}{2} \frac{\partial f}{\partial t} + \frac{\partial f}{\partial J} \frac{(\dagger_{x} - \dagger_{y})}{J} \right]$$

$$V_{y} = \left\{ \frac{1}{2} \frac{\partial f}{\partial t} - \frac{\partial f}{\partial J} \frac{(\dagger_{x} - \dagger_{y})}{J} \right]$$

$$V_{xy} = 2 \left\{ \frac{\partial f}{\partial J} \ddagger_{xy} \right\}$$
(1.4)

(1.3), (1.4)

,

$$V_x + V_y = \frac{\partial f}{\partial \dagger}$$
(1.5)

$$\frac{\mathsf{V}_{xy}}{\mathsf{V}_x - \mathsf{V}_y} = \frac{\ddagger_{xy}}{\ddagger_x - \ddagger_y} \tag{1.6}$$

$$\uparrow_{x} \mathsf{v}_{x} + \uparrow_{y} \mathsf{v}_{y} + 2 \ddagger_{xy} \mathsf{v}_{xy} = | \}$$
(1.7)
(1.4)

$$\sqrt{\left(\mathsf{V}_{x}-\mathsf{V}_{y}\right)^{2}+4\mathsf{V}_{xy}^{2}}=2\}\frac{\partial f}{\partial J}$$
(1.8)

(1.5), (1.8)

$$V_{x} + V_{y} + \sqrt{(V_{x} - V_{y})^{2} + 4V_{xy}^{2}} \cdot \left(\frac{\partial f}{\partial \dagger} / 2\frac{\partial f}{\partial J}\right) = 0$$
(1.9)

,

.

.

(1.9)

$$\frac{\partial f}{\partial \dagger} = 0, \qquad (1.9),$$

- $\ddagger_{xy} = 0, \quad \dagger_x \dagger_y \neq 0$ (1.10)
- (1.6)

$$V_{xy} = 0 \tag{1.11}$$

$$V_x + V_y + a(V_x - V_y) = 0, \quad a = \frac{\partial f}{\partial \dagger} / 2 \frac{\partial f}{\partial J}$$
 (1.12)

$$V_x = \frac{\partial u}{\partial x}, \quad V_y = \frac{\partial v}{\partial y}, \quad V_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
 (1.13)

$$u, v -$$

$$(1.13), (1.11)$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

$$(1.14)$$

(1.14)

(1.9), (1.13), (1.20)

•

$$u = -\frac{\partial \Psi}{\partial x}, \quad v = \frac{\partial \Psi}{\partial y}$$
 (1.15)

,

$$(1-a)\frac{\partial^2 \Psi}{\partial x^2} - (1+a)\frac{\partial^2 \Psi}{\partial y^2} = 0$$
(1.16)

[3]

$$\sqrt{(\dagger_x - \dagger_y)^2 + 4 \ddagger_{xy}^2} - (tg...)\dagger = 2 |, ..., | - const$$
 (1.17)
(1.12), (1.17), (1.15)
 $\left(1 - \frac{1}{2} tg...\right) \frac{\partial^2 \Psi}{\partial x^2} - \left(1 + \frac{1}{2} tg...\right) \frac{\partial^2 \Psi}{\partial y^2} = 0$ (1.18)
 $\ddagger_{xy}, \dagger_x = \dagger_y,$ (1.6), V_{xy} .

$$\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} = 0 \tag{1.19}$$

$$u = \frac{\partial \Psi}{\partial x}, \quad v = \frac{\partial \Psi}{\partial y}$$
 (1.20)

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + a \sqrt{\left(\frac{\partial^2 \Psi}{\partial x^2} - \frac{\partial^2 \Psi}{\partial y^2}\right)^2 + 4 \left(\frac{\partial^2 \Psi}{\partial x \partial y}\right)^2} = 0$$
(1.21)
, (1.10) $\ddagger_x - \ddagger_y \rightarrow 0$
, (1.16), $\ddagger_x = \ddagger_y$
(1.21),
 $a = 0$ (1.21)

$$\begin{aligned}
\ddagger_{\max} &= | + tg_{\dots} \cdot \uparrow, \ \ddagger_{\max} = \frac{\uparrow_{i} - \uparrow_{j}}{2} \\
\uparrow &= \frac{1}{3}(\uparrow_{x} + \uparrow_{y} + \uparrow_{z}), \ \dots, | - const
\end{aligned}$$
(2.1)
$$\begin{aligned}
\ddagger_{x} &= \ddagger_{x} + \uparrow_{y} + \uparrow_{z}, \dots, | - const
\end{aligned}$$

$$\dagger_1 = \dagger_2, \quad \dagger_3 = \dagger_1 + | + tg... \cdot \dagger$$
(2.2)
(2.2)

$$V_{1} = \} + \sim \left(-1 - \frac{1}{3} \operatorname{tg}_{\cdots}\right)$$

$$V_{2} = -\} + \sim \left(-\frac{1}{3} \operatorname{tg}_{\cdots}\right)$$

$$V_{3} = \sim \left(1 - \frac{1}{3} \operatorname{tg}_{\cdots}\right)$$
(2.3)

(2.3)

$$V_1 + V_2 + V_3 + \frac{tg...}{1 - \frac{1}{3}tg...}V_3 = 0$$
(2.4)

- $\mathsf{v}_{ik}\dagger_{kj} = \dagger_{ik}\mathsf{v}_{kj} \tag{2.5}$
 - 1, 2, 3 *xyz* (2.2),
- $V_{xz} = V_{yz} = 0$ (2.6)
- [1, 2]

$$u = \frac{\partial \Psi}{\partial x}, \quad v = \frac{\partial \Psi}{\partial y}, \quad w = -\frac{\partial \Psi}{\partial z}$$
 (2.7)

(2.4)

. .

$$V_{x} + V_{y} + \frac{1 + \frac{2}{3} tg...}{1 - \frac{1}{3} tg...} V_{z} = 0$$
(2.8)

$$u = \frac{\partial \Psi}{\partial x}, \quad v = \frac{\partial \Psi}{\partial y}, \quad w = \frac{\partial \Psi}{\partial z}$$
(2.9)
(2.4)

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{tg...}{1 - \frac{1}{3}tg...} V_3 = 0$$
(2.10)

$$V_3$$
 V_{ij} , , , , , (2.9) Ψ_{ij} .

1.	1	, 10.51	•	.,	//	•	. 20	00.	. 371.
2.	1. 54	. 49-51.		.,	//	•	1999.	6.	.39–
3.	54.								

. .- . .,

:

٠,

[3]:

$$V_r = V_1 \sin \left\{ = \frac{dr}{dt} \right. \tag{1}$$

•

$$V_T = V_1 \cos\{ +V_2 = r \frac{d\xi}{dt}$$
(2)

$$\frac{dr}{r} = \frac{\sin\{}{K + \cos\{}d\{$$
(3)

$$K = \frac{V_2}{V_1}.$$
(3), $\int \frac{dr}{r} = \int \frac{\sin\{}{K + \cos\{} d\{, \})$

$$\{ = 0, r = r_0, r = \frac{r_0(K+1)}{K + \cos\{}.$$
(4)

$$\begin{cases} = 0 & A_{0}, \qquad r = r_{0} = a - c, \\ V_{1} & V_{2} & (-.1). \\ \frac{d}{dt} = \frac{V_{1} \cos\{+V_{2}}{r} & (-.1). \\ \frac{d}{dt} = \frac{V_{1} \cos\{+V_{2}}{r} & (-.1) & (-.1). \\ \frac{d}{dt} = \frac{V_{1} \cos\{+V_{2}}{r} & (-.1) & (-.1) & (-.1) & (-.1) \\ \frac{d}{dt} = \frac{V_{1} \cos\{+V_{2}}{r} & (-.1) & (-.$$

$$tV_{1} = r_{0}V(1+V)\left[\frac{V\sin\{1-V\cos\{1\})}{(V^{2}-1)(1+V\cos\{1\})} - \frac{1}{V^{2}-1}\frac{2}{\sqrt{1-V^{2}}}\arctan\frac{(1-V)tg\frac{1}{2}}{\sqrt{1-V^{2}}}\right]_{0}^{1}$$

	OM	{		-	,	
A	₁ . {	= 0,		A_{o}		
$A_o A\{_o = c$			(<i>B</i> .	$M_{o} \perp BA\{$	[₀)	
$OM_0 = r_0 = F_1 A_0 = a$	-c.		,			,
				{ .		
	~					<i>t</i> .
, (OM _o				-	
$\{=0, OM -$	$\{=f$.			<i>t</i> ,		A_{o}
$A_{_M}$		<i>x</i> ,			-	М _о ,
	,		M .		$M_{o}M$	
T fa	,					
$\sim_t = \frac{1}{2c} = \frac{3}{2bV}$	-[/]					(10)
	1	t				
М		Y	$t_2 2V_1$	b_{t}		М
		Λ_t	$\frac{1}{2} = \frac{1}{2} \int dt$	\overline{a}^{i}		1 v1 _t
-	$r_t = OM_t$			<i>t</i> .		M_{t}
В	В				BM_t ,	
A_t ,	$A_0 A_t = c \cos \theta$	s{ .	F_1			
$A_0 A_t$,		K_t .		
$F_1 K_t$,	,	F_1K_t			-	
(.2).						014
F_1		F_1K_t ,		:	,	OM_t ,
	$A_{\{t\}}$		<i>t</i> .			
,		A_o (r	$a_0 = a - c =$	OM_o) c)	
$(A_{o}BA_{M})$			$A_M(r_M = 0)$	(c+a),		-
	,	$M_{_{0}}$,				x
$(M_0 \rightarrow M),$		Μ.		A_{M}		
$(A_M B_1 A_o)$			$A_{\!\scriptscriptstyle o}$,		-	
	M,				x (M -	$\rightarrow M_0$),
M_{0}	•	,	,		х,	

 $\begin{array}{ccc} M_t \, , & t \\ 2nT < t < \left(2n + 1 \right) T & (n = 0, 1, 2, \dots - \\ & (A_o B A_M) \,). \end{array} \hspace{1.5cm} , \end{array}$

1.			.:	, 1981. 544 .			
2.		-2					:
	2004.222 .						
3.					•	.: 1965. 4	l67 .

. . .,

.: 3-93-94 (.), 3-33-95 (.) E-mail: <u>roman@gyumri.am</u>

:

. . .,

.: 3-94-79 (.), 3-60-03(.) E-mail: <u>vgadamyan@mail.ru</u>

ITERATIVE METHODS FOR STABILIZED DISCRETE CONVECTION-DIFFUSION PROBLEMS Manukvan N.K.

Yerevan. Armenia

In this paper we study the computational cost of solving the convectiondiffusion equation using various discretization strategies and iteration solution algorithms. The choice of discretization influences the properties of the discrete solution and also the choice of solution algorithm. The discretizations considered here are stabilized low – order finite element schemes using streamline diffusion. crosswind diffusion and shock-capturing. The latter. shock-capturing discretizations lead to nonlinear algebraic systems and require nonlinear algorithms. We compare various preconditioned Krylov subspace methods including Newton-Krylov methods for nonlinear problems, as well as several preconditioners based on relaxation and incomplete factorization. We find that although enhanced stabilization based on shock-capturing requires fewer degrees of freedom than linear stabilizations to achieve comparable accuracy, the nonlinear algebraic systems are more costly to solve than those derived from a judicious combination of streamline diffusion and crosswind diffusion. Solution algorithms based on GMRES with incomplete block-matrix factorization preconditioning are robust and efficient.

Consider the two-dimensional convection- diffusion equation

$$- \vee \Delta U + S \nabla U = f \quad in \quad \Omega, u = g \quad in \quad \partial \Omega$$
(1)

where $S = (S_1, S_2)$ is a flow velocity field, V is a diffusion or viscosity coefficient, and *f*, *g* are given functions. Our concern in this paper is the efficient solution of discrete versions of this problem by iterative methods, with emphasis on the effect of discretization strategy on the overall cost of achieving a specified accuracy. We are particularly interested in cases where the solution contains steep gradients, i.e. boundary layers or internal layers.

In this paper we make a comparison of the cost effectiveness of a collection of such discretization strategies, for solving a set of benchmark problems of the form (1). In identifying cost effectiveness, our aims are twofold:

1. To compare and contrast the different discretization strategies in their capability to compute accurate solutions of benchmark problems.

2. To identify efficient solution algorithms for each discretization.

For solution algorithms, we use preconditioned Krylov subspace methods, including Newton-Krilov variants of these ideas to handle nonlinear algebraic systems [1-2]. Our results indicate that the nonlinear shock-capturing discretization yield significantly more accurate solutions than linear stabilization methods.

However, the cost of solving the nonlinear systems also tends to be high. Although linear stabilizations require finer grids than nonlinear ones to achieve comparable accuracy, the overall solution costs of using linear discretizations are lower.

REFERENCES

- Axelsson O.,On the numerical solution of convection dominated convectiondiffusion problems. Mathematics Methods in Energy Research.Philadelphia: SIAM 1984.pp 3-21
- 2. Chan T.F., Jackson K.R., Nonlinear preconditioned Krylov space methods for discrete Newton algorithms. SIAM J.SCI.Stat. Comput.5, pp.533-542.

Information about autor:

Manukyan Narine K.

Yerevan State University E-mail: <u>narulka22000@yahoo.com</u>

,

•

•, ,

-

[1-3].

,

-

• •

·

,

-

Oxy.

, ().

:

:

-

-

,

$$Ox , y = \pm 0$$

$$\left(L' = R/L; R = (-\infty, \infty)\right):$$

$$\left. - \ddagger_{yz} \right|_{y=+0} = T_{+}(x) = \begin{cases} \ddagger_{+}^{(1)}(x) & (x \in L_{1}) \\ \ddagger_{+}^{(2)}(x) & (x \in L_{2}) \\ \ddagger(x) & (x \in L') \end{cases}$$

$$\left. - \ddagger_{yz} \right|_{y=-0} = T_{-}(x) = \begin{cases} \ddagger_{-}^{(1)}(x) & (x \in L_{1}) \\ \ddagger_{-}^{(2)}(x) & (x \in L_{2}) \\ \ddagger(x) & (x \in L') \\ \ddagger(x) & (x \in L') \end{cases}$$

$$L_{2} :$$

$$(1)$$

$$u_{z}^{+}(x, y)\Big|_{y=+0} = u_{\overline{z}}^{-}(x, y)\Big|_{y=-0} = u_{k} = \text{const}$$

$$x \in (c_{k}, d_{k}) \ (k = \overline{1, N_{2}})$$

$$y = \pm h_{\pm}:$$
(2)

$$u_{z}^{+}(x,y)\Big|_{y=h_{+}} = 0;$$
 $u_{z}^{-}(x,y)\Big|_{y=-h_{-}} = 0$ (3)

 $u_z^{\pm}(x, y) -$

,

$$\Delta u_z^{\pm}(x,y) = \frac{\partial^2 u_z^{\pm}(x,y)}{\partial x^2} + \frac{\partial^2 u_z^{\pm}(x,y)}{\partial y^2} = 0$$
(4)

$$\Omega(x) = T_{+}(x) + T_{-}(x); \quad h(x) = \frac{du_{z}^{+}(x,+0)}{dx} + \frac{du_{z}^{-}(x,-0)}{dx}$$
$$t(x) = T_{+}(x) - T_{-}(x) = \begin{cases} \mathbb{E}(x) & (x \in L_{2}) \\ \ddagger_{+}^{(1)}(x) - \ddagger_{-}^{(1)}(x) & (x \in L_{1}) \\ 0 & (x \in L') \end{cases}$$
(5)

$$w(x) = \frac{du_z^+(x,+0)}{dx} - \frac{du_z^-(x,-0)}{dx} = \begin{cases} \{x, x \in L_1\} \\ 0 & (x \in R/L_1) \end{cases}$$
(6)

-

-

$$\begin{cases} \frac{1}{f} \int_{L_{1}} \frac{w(s)ds}{s-x} - \frac{1}{f} \int_{L_{1}} K(x-s)w(s)ds - \\ -\frac{G_{+} - G_{-}}{2G_{+}G_{-}} t(x) - \frac{1}{f} \int_{L_{1}} M(x-s)t(s)ds - \\ -\frac{1}{f} \int_{L_{2}} M(x-s)t(s)ds = -\frac{G_{+} + G_{-}}{2G_{+}G_{-}} \Omega(x); \quad (x \in R) \\ -\frac{G_{+} - G_{-}}{2} w(x) - \frac{G_{+}G_{-}}{f} \int_{L_{1}} M(x-s)w(s)ds + \\ +\frac{1}{f} \int_{L_{1}} \frac{t(s)ds}{s-x} + \frac{1}{f} \int_{L_{2}} \frac{t(s)ds}{s-x} - \frac{1}{f} \int_{L_{1}} Q(x-s)t(s)ds - \\ -\frac{1}{f} \int_{L_{2}} Q(x-s)t(s)ds = \frac{G_{+} + G_{-}}{2} h(x); \quad (x \in R) \end{cases}$$
(7)

$$K(x) = \int_{0}^{\infty} \frac{G_{+}[1 - \text{th}(]h_{-})] + G_{-}[1 - \text{th}(]h_{+})]}{G_{+}\text{th}(]h_{-}) + G_{-}\text{th}(]h_{+})} \sin(]x)d\}$$

$$M(x) = \int_{0}^{\infty} \frac{\text{th}(]h_{-}) - \text{th}(]h_{+})}{G_{+}\text{th}(]h_{-}) + G_{-}\text{th}(]h_{+})} \cos(]x)d\}$$

$$Q(x) = \int_{0}^{\infty} \frac{G_{+}\text{th}(]h_{-})[\text{th}(]h_{+}) - 1] + G_{-}\text{th}(]h_{+})[\text{th}(]h_{-}) - 1]}{G_{+}\text{th}(]h_{-}) + G_{-}\text{th}(]h_{+})} \sin(]x)d\}$$

$$(7) \qquad L_{1},$$

$$L_{2},$$

$$(\qquad) \qquad :$$

$$\begin{cases} \frac{1}{f} \int_{L_{1}} \frac{\{(s)ds}{s-x} - \frac{1}{f} \int_{L_{1}} K(x-s)\{(s)ds - \frac{1}{f} \int_{L_{2}} M(x-s)E(s)ds = \frac{1}{f} \int_{L_{1}} M(x-s)[\ddagger_{+}^{(1)}(s) - \ddagger_{-}^{(1)}(s)]ds - \frac{1}{f} \int_{L_{2}} M(x-s)E(s)ds = \frac{1}{f} \int_{L_{1}} M(x-s)[\ddagger_{+}^{(1)}(s) - \ddagger_{-}^{(1)}(s)]ds - \frac{G_{+}G_{-}}{f} \int_{L_{1}} M(x-s)\{(s)ds + \frac{1}{f} \int_{L_{2}} \frac{E(s)ds}{s-x} - \frac{1}{f} \int_{L_{2}} Q(x-s)E(s)ds = -\frac{1}{f} \int_{L_{1}} \frac{[\ddagger_{+}^{(1)}(s) - \ddagger_{-}^{(1)}(s)]ds}{s-x} + \frac{1}{f} \int_{L_{1}} Q(x-s)[\ddagger_{+}^{(1)}(s) - \ddagger_{-}^{(1)}(s)]ds; \quad (x \in L_{2}) \end{cases}$$

$$\begin{cases} b_{k} \\ k \\ k \end{cases}$$

$$(8)$$

,

$$\int_{c_k}^{d_k} \mathbb{E}(x) dx = P_k, \quad (k = \overline{1, N_2})$$
(10)
(7)
(7)

:

$$\ddagger (x) = -\frac{G_{+}G_{-}}{f(G_{+}+G_{-})} \int_{L_{1}} \frac{\{(s)ds}{s-x} + \frac{G_{+}G_{-}}{f(G_{+}+G_{-})} \int_{L_{1}} K(x-s) \{(s)ds + \frac{G_{+}G_{-}}{f(G_{+}+G_{-})} \int_{L_{1}} M(x-s) [\ddagger^{(1)}_{+}(s) - \ddagger^{(1)}_{-}(s)] ds +$$

$$+ \frac{G_{+}G_{-}}{f(G_{+}+G_{-})} \int_{L_{2}} M(x-s) \pounds (s) ds; \qquad (x \in L')$$

$$,$$

$$(11)$$

$$(8) (9)-(10). (8)-(10) (11). (8)-(10) (11). (8)-(10) (11). (8)-(10) (11). (8)-(10) (-1;1). (8)-(10) (-1;1). (8)-(10) (-1;1). (1,1).$$

5. Erdogan F., Gupta G.D., Cook T.S. The numerical solutions of singular integral equations. Methods of Analysis and solution of Crack Problems; pp. 368-425. Noordhoff Intern. Publ., Leyden, 1973.

.

. .- . ., , 0019, :

:

, .

, .

,24

,

E-mail: mechins@sci.am

. .- . .,

: ,0019,

,24

: (37410)-43-16-52 E-mail: mechins@sci.am 1. o [1,2]. (3]. y = 0, x > 0. $t_{xy} \neq 0,$ $y = 0, x < 0, t_{yy} = 0,$ U = 0. U = 0, ..., U,V, a,b –

•

•,

• •

,

_

t

:

$$a^{2} \frac{\partial^{2} U}{\partial x^{2}} + b^{2} \frac{\partial^{2} U}{\partial y^{2}} + (a^{2} - b^{2}) \frac{\partial^{2} V}{\partial x \partial y} = \frac{\partial^{2} U}{\partial t^{2}}$$

$$a^{2} \frac{\partial^{2} V}{\partial y^{2}} + b^{2} \frac{\partial^{2} V}{\partial x^{2}} + (a^{2} - b^{2}) \frac{\partial^{2} U}{\partial x \partial y} = \frac{\partial^{2} V}{\partial t^{2}}$$

$$(1)$$

$$(y = 0):$$

$$\dagger_{yy} = 0, \ x < 0, \ \frac{\partial V}{\partial t} + k \dagger_{yy} = C_0 H(x) \mathsf{u}(t), \ x > 0$$

$$U = 0, \ -\infty < x < \infty$$
(2)

$$\overline{U}; \overline{V} = \sum_{n=1}^{2} \int_{-\infty}^{\infty} e^{i\overline{r}_{x+i}\overline{s}_{ny}} \overline{\overline{U}}^{(n)}; \overline{\overline{V}}^{(n)} d\overline{\overline{r}}$$

$$\overline{S}_{n} = \sqrt{\frac{\tilde{S}^{2}}{c_{n}^{2}} - \overline{\overline{r}}^{2}}, \overline{S}_{n}^{\pm} = \sqrt{\frac{\tilde{S}}{c_{n}} \pm \overline{\overline{r}}}$$

$$c_{1} = a, c_{2} = b, \overline{S}_{n} = \overline{S}_{n}^{+} \overline{S}_{n}^{-}, n = 1, 2$$

$$(3)$$

$$s = -i\tilde{S} \qquad t.$$

$$\overline{V}^{(1)} = \frac{\overline{S}_{1}}{\overline{r}} \overline{U}^{(1)}, \quad \overline{V}^{=(2)} = -\frac{\overline{r}}{\overline{S}_{2}} \overline{U}^{(2)} \qquad t.$$

$$(3) \quad (2) \qquad x,$$

$$\overline{T}_{yy} \frac{k}{s} \left(1 + \frac{s(r^{2} + S_{1}S_{2})}{k\tilde{S}^{2} \dots iS_{2}} \right) = \frac{C_{0}}{2firs} + \frac{V^{+}}{s} \qquad (5)$$

$$\begin{aligned} & \left| \begin{array}{c} & \left| \int_{yy}^{\infty} e^{-i\overline{r}x} dx \right|_{y=0} e^{-i\overline{r}x} dx, V^{+} = \frac{1}{2f} \int_{-\infty}^{0} \overline{V} \Big|_{y=0} e^{-i\overline{r}x} dx \\ & \left| \begin{array}{c} & (+) \\ \overline{r}, & (-) \\ & (5) \end{array} \right|_{y=0} e^{-i\overline{r}x} dx \end{aligned}$$

$$\dagger_{yy}^{-} = \frac{s}{k} \cdot \frac{C_0}{2fi\overline{r}F^+(0)F^-(\overline{r})s}$$
(6),

$$- [5]$$

$$\dagger_{yy} = \frac{1}{2fi} \int_{\tau-i\infty}^{\tau+i\infty} \int_{-\infty}^{\infty} \frac{s}{k2f} \cdot \frac{C_0 \check{S} d\bar{r}}{si \check{S} \bar{r} F^+(0) F^-(\bar{r})} ds =$$

$$= -2 \operatorname{Re} i \frac{C_0}{2ft F^+(0) F^-(\frac{t}{x})k} = \dagger_s$$
(6)

$$F^{+}(0) = \sqrt{1 - \frac{1}{ak...}}$$

$$F^{-}(\Gamma) = e^{\frac{1}{2f_{i}} \int_{a}^{b} \ln \frac{ks_{2...} - (c^{2} - is_{1}^{*}s_{2}) d'}{ks_{2...} - (c^{2} + is_{1}^{*}s_{2})' - \Gamma}} \cdot e^{\frac{1}{2f_{i}} \int_{b}^{\infty} \ln \frac{ks_{2...}^{*} - i(c^{2} - s_{1}^{*}s_{2}^{*}) d'}{ks_{2...}^{*} + i(c^{2} + is_{1}^{*}s_{2}^{*})' - \Gamma}}$$

$$ar = \frac{at}{x}, \ \overline{r} = r\overline{S}, \ \epsilon = \frac{y}{a}\overline{S}, \ s_1^* = \frac{\overline{S}}{a}\sqrt{y^2 - 1}$$
$$s_2 = \frac{\overline{S}}{a}\sqrt{\frac{a^2}{b^2} - y^2}, \ s_2^* = \frac{\overline{S}}{a}\sqrt{y^2 - \frac{a^2}{b^2}}$$

$$\overline{S}_{n}^{*} = \sqrt{\overline{\Gamma}^{2} - \frac{\overline{S}^{2}}{c_{n}^{2}}}, c_{1} = a, c_{2} = b$$

$$F^{-}(\Gamma) = \exp\left(\frac{1}{f}\int_{1}^{a_{b}^{\prime}} \arctan\left(\frac{\sqrt{y^{2} - 1}\sqrt{\frac{a^{2}}{b^{2}} - y^{2}}}{ka...\sqrt{\frac{a^{2}}{b^{2}} - y^{2}} - y^{2}}\frac{dy}{y - \Gamma a} + \frac{1}{f}\int_{a_{b}^{\prime}}^{\infty} \arctan\left(\frac{\sqrt{y^{2} - 1}\sqrt{y^{2} - \frac{a^{2}}{b^{2}}} - y^{2}}{ka...\sqrt{y^{2} - \frac{a^{2}}{b^{2}}}}\frac{dy}{y - \Gamma a}\right)$$

$$r = 0$$

_

$$F'(\infty) = 1,
\dagger_{yy} = \frac{C_0}{ftk} \operatorname{Re} 1/\sqrt{\frac{1}{ak...} - 1}$$
(8)
$$x = 0 \quad \cdot \\ x = 0 \quad \dagger_{yy} \quad , \qquad o \qquad , \quad \dagger_{yy}$$

$$\dagger_s \cdot$$

$$\begin{aligned}
\uparrow_{yy} < \uparrow_{s}, \\
\text{Re } 1/\sqrt{\frac{1}{ak...} - 1} < \uparrow_{s} \frac{ftk}{C_{0}} \\
&\frac{1}{ak...} > 1, \\
y = 0, x > 0
\end{aligned}$$
(9)
$$\frac{1}{ak...} > 1, \\
y = 0, x > 0$$
(6)
$$\uparrow_{yy} = \text{Re} \frac{C_{0}}{ftk\sqrt{\frac{1}{ak...} - 1}F^{-}(\frac{t}{x})}$$

ka	0,1	0,4	0,8
y x _{at}	0,1	0,1	0,1
0,2	0.711704	0.695566	0.672134
0,4	0.585756	0.552452	0.528352
0,6	0.978129	0.937057	0.926261
0,8	1.29186	1.25798	1.27588
1	1.54281	1.52019	1.41872
1,2	1.47803	1.46714	1.38373
1,4	1.43826	1.43383	1.3618
1,6	1.41154	1.41107	1.34679
1,8	1.39243	1.39456	1.33588
2	1.37812	1.38206	1.3276
2,2	1.367	1.37227	1.3211
2,4	1.35814	1.3644	1.31586
2,6	1.3509	1.35794	1.31155
2,8	1.34488	1.35255	1.30794
3	1.3398	1.34797	1.30487
3,2	1.33545	1.34404	1.30224
3,4	1.33169	1.34063	1.29995
3,6	1.32841	1.33764	1.29794
3,8	1.32551	1.33501	1.29616
4	1.32294	1.33266	1.29458
4,2	1.32065	1.33056	1.29316
4,4	1.31859	1.32867	1.29188
4,6	1.31672	1.32695	1.29072
4,8	1.31503	1.3254	1.28967
5	1.31349	1.32398	1.28871

2.

$$k = 0$$

2.
$$k = 0$$

$$\uparrow_{yy} = 0, \ x < 0 \ \frac{\partial V}{\partial t} = C_0 H(x) \mathsf{u}(t), \ x > 0$$

$$U = 0, \ -\infty < x < \infty$$
(10)

$$\dagger_{yy} = \frac{2a^{2}b^{2}}{a^{2} + b^{2}} \frac{C_{0}}{2f} 2\operatorname{Re} i \frac{\operatorname{S}_{2}^{-}\left(\frac{t}{x}\right)}{\frac{t}{x}F^{-}\left(\frac{t}{x}\right)F^{+}(0)(-x)} = \\
= -\frac{2a^{2}b^{2}}{a^{2} + b^{2}} \frac{C_{0}}{2f} 2\operatorname{Re} \frac{i\sqrt{\frac{1}{b} - \frac{t}{x}}}{tF^{-}\left(\frac{t}{x}\right)F^{+}(0)} =$$
(11)

$$= -\frac{2a^2b^2}{\sqrt{a^2+b^2}} \frac{C_{0\cdots}}{\sqrt{2ab}} \operatorname{Re} \frac{\sqrt{t-\frac{x}{b}}}{t\sqrt{x}F^{-}\left(\frac{t}{x}\right)}$$

$$F^{+}(0) = \sqrt{\frac{2ab}{a^{2} + b^{2}}}, \ F^{-}(\Gamma) = e^{-\frac{1}{f} \int_{y_{a}}^{y_{b}} \frac{arctg \frac{s_{1}^{*} s_{2}^{*}}{y_{a}^{*}} \frac{d'}{r-\Gamma}}}{\int_{x_{a}}^{z} \frac{\sqrt{y^{2} - 1} \sqrt{\frac{a^{2}}{b^{2}} - y^{2}}}{y^{2}} \frac{dy}{y - \Gamma a}, \ a\Gamma = \frac{at}{x}$$

1. / .: , 1961. . 564-571 2. . ., / : 2007. .127-130. 3. ., . ., . . : 2007. .106-119. / 4. _ . .: . .,1962.278 . 5.

> -97», 2007, .244. /«

_

• 4, , .: (0284)23638, 22048, (093)192465 E-mail: dinunts2007@rambler.ru

. .

.

1.

y > 0

,

,

x > 0.

,

,

•,

•

$$\begin{aligned} \frac{\partial^{2} U_{1}}{\partial t^{2}} &= a_{1}^{2} \frac{\partial^{2} U_{1}}{\partial x^{2}} + b_{1}^{2} \frac{\partial^{2} U_{1}}{\partial y^{2}} + \left(a_{1}^{2} - b_{1}^{2}\right) \frac{\partial^{2} V_{1}}{\partial x \partial y} \\ \frac{\partial^{2} V_{1}}{\partial t^{2}} &= a_{1}^{2} \frac{\partial^{2} V_{1}}{\partial y^{2}} + b_{1}^{2} \frac{\partial^{2} V_{1}}{\partial x^{2}} + \left(a_{1}^{2} - b_{1}^{2}\right) \frac{\partial^{2} U_{1}}{\partial x \partial y} \end{aligned}$$
(1.1)
$$U_{1} &= u_{1} - u_{0}, \quad V_{1} = v_{1} - v_{0}, \quad u_{0}, v_{0} \\ [1, 5]: \\ \frac{\partial^{2} u_{0}}{\partial t^{2}} &= a_{1}^{2} \frac{\partial^{2} u_{0}}{\partial x^{2}} + b_{1}^{2} \frac{\partial^{2} u_{0}}{\partial y^{2}} + \left(a_{1}^{2} - b_{1}^{2}\right) \frac{\partial^{2} c_{0}}{\partial x \partial y} + \\ &\quad + \frac{X_{0}}{\cdots_{1}} H(x - x_{0}) H(y - y_{0}) u(t) \\ \frac{\partial^{2} c_{0}}{\partial t^{2}} &= a_{1}^{2} \frac{\partial^{2} c_{0}}{\partial y^{2}} + b_{1}^{2} \frac{\partial^{2} c_{0}}{\partial x^{2}} + \left(a_{1}^{2} - b_{1}^{2}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y} + \\ &\quad + \frac{Y_{0}}{\cdots_{1}} H(x - x_{0}) H(y - y_{0}) u(t) \\ y < 0 \qquad (1.1) \qquad 2, \quad u_{1}, \quad v_{1} \qquad u_{2}, \quad v_{2} - \\ , \qquad , \qquad , \quad u(t) - \qquad . \end{aligned}$$

:

$$u_1 = u_2, v_1 = v_2, \dagger_{1xy} = \dagger_{2xy}, \dagger_{1yy} = \dagger_{2yy}, x < 0$$

 $u_1 = 0, v_1 = 0, u_2 = 0, v_2 = 0, x > 0$
 $u_1, v_1, u_2, v_2 = O(r^{\frac{1}{2}}), r = \sqrt{x^2 + y^2} \rightarrow 0$ (1.2)

$$U_{1} + u_{0} = u_{2}, V_{1} + v_{0} = v_{2}, \dagger_{1xy} + \dagger_{1xy}^{0} = \dagger_{2xy}, \dagger_{1yy} + \dagger_{1yy}^{0} = \dagger_{2yy}, \ x < 0$$

$$U_{1} = -u_{0}, V_{1} = -v_{0}, u_{2} = 0, v_{2} = 0, \ x > 0$$

$$t,$$

$$(1.3)$$

$$\begin{aligned}
x, & (1.1) \\
\overline{V}_{1}^{-(k)} &= \frac{a_{1}^{2}\overline{S}_{1}^{-2} - b_{1}^{2}\overline{S}_{k}^{-2}}{(a_{1}^{2} - b_{1}^{2})\overline{\Gamma}\overline{S}_{k}} \overline{U}_{1}^{-(k)}, \overline{\overline{V}}_{2}^{-(k)} &= \frac{a_{2}^{2}\overline{X}_{1}^{-2} - b_{2}^{2}\overline{X}_{k}^{-2}}{(a_{2}^{2} - b_{2}^{2})\overline{\Gamma}\overline{X}_{1}} U_{2}^{-(k)} \\
\overline{U}_{1}; \overline{V}_{1} &= \sum_{k=1}^{2} \int_{-\infty}^{\infty} e^{i\overline{\Gamma}x + i\overline{S}_{k}y} \overline{\overline{U}}_{1}^{-(k)}; \overline{\overline{V}}_{1}^{-(k)} d\overline{\Gamma} \\
\overline{u}_{2}; \overline{\gamma}_{2} &= \sum_{k=1}^{2} \int_{-\infty}^{\infty} e^{i\overline{\Gamma}x + i\overline{X}_{k}y} \overline{\overline{u}}_{2}^{-(k)}; \overline{\gamma}_{2}^{-(k)} d\overline{\Gamma} \\
\overline{S}_{k} &= \sqrt{\frac{\overline{S}^{2}}{c_{k}^{2}} - \overline{\Gamma}^{-2}}, \overline{X}_{k} &= -\sqrt{\frac{\overline{S}^{2}}{d_{k}^{2}} - \overline{\Gamma}^{-2}} \\
c_{1} &= a_{1}, c_{2} &= b_{1}, d_{1} &= a_{2}, d_{2} &= b_{2} \\
&= -i\overline{S} & t; c_{k} & d_{k} -
\end{aligned}$$
(1.4)

$$y > 0$$
 $y < 0; ..._1$..._2 -

,

•

$$\begin{split} y=0 \\ \overline{U}_{1}^{(1)} + \overline{U}_{1}^{(2)} + \overline{u}_{0} - \overline{u}_{2}^{(1)} - u_{2}^{(2)} = U^{-}, \overline{V}_{1}^{-}{}^{(1)} + \overline{V}_{1}^{-}{}^{(2)} + \overline{}_{0} = V^{-} \\ \overline{\Gamma}_{1xy} + \overline{\Gamma}_{1xy}^{0} - \overline{\Gamma}_{2xy} = \Omega_{1}^{-}, \ \overline{\Gamma}_{1yy} + \overline{\Gamma}_{1yy}^{0} - \overline{\Gamma}_{2yy} = \Omega_{2}^{-}, \ \overline{}_{2}^{-} + \overline{}_{2}^{-} = V_{2}^{+} \\ \overline{U}_{1}^{(1)} + \overline{U}_{1}^{(2)} + \overline{u}_{0} = t^{+}, \ \overline{V}_{1}^{(1)} + \overline{V}_{1}^{(2)} + \overline{}_{0} = t^{+}, \ \overline{U}_{2}^{(1)} + \overline{U}_{2}^{(2)} = u_{2}^{+} \\ \overline{u}_{0}^{-}; \ \overline{}_{0} = \sum_{0}^{2} \overline{u}_{0}^{(k)}; \ \overline{}_{0}^{-(k)} \{_{k} \ \{_{k} = \exp(-i\overline{\Gamma}x_{0} - iS_{k}y_{0}), \ S = 0, \ y_{0} > 0 \\ \overline{u}_{0}^{-}(0) = \frac{iX_{0}}{2f_{\cdots 1}a_{1}^{2}S_{1}^{2}\overline{\Gamma}}, \ \overline{u}_{0}^{(1)} = -\frac{i}{4f_{\cdots 1}} \frac{X_{0}\overline{\Gamma} + Y_{0}S_{1}}{S_{1}^{2}\overline{S}^{2}} \end{split}$$

S

$$\begin{split} \overline{u}_{0}^{(2)} &= -\frac{i}{4f_{\cdots_{1}}} \frac{X_{0}S_{2} - Y_{0}\overline{\Gamma}}{S_{2}\overline{\Gamma}S^{2}} \\ & \uparrow_{0}^{(0)} &= \frac{i}{2f_{\cdots_{1}}} \frac{Y_{0}}{b_{1}^{2}\overline{\Gamma}} S_{2}^{2}, \uparrow_{0}^{(1)} = \frac{S_{1}}{\overline{\Gamma}} \overline{u}_{0}^{(1)}, \uparrow_{0}^{(2)} = -\frac{\overline{\Gamma}}{S_{2}} \overline{u}_{0}^{(2)} \\ & U^{-} &= \frac{1}{2f} \int_{0}^{\infty} (u_{1} - u_{2}) e^{-irx} dx, V^{-} = \frac{1}{2f} \int_{0}^{\infty} (\uparrow_{1} - \uparrow_{2}) e^{-irx} dx \\ & \Omega_{1}^{-} &= \frac{1}{2f} \int_{0}^{\infty} (\downarrow_{1xy} - \uparrow_{2xy}) e^{-irx} dx, \Omega_{2}^{-} = \frac{1}{2f} \int_{0}^{\infty} (\uparrow_{1yy} - \uparrow_{2yy}) e^{-irx} dx, \quad y = 0 \quad (1.5) \\ & t^{+} &= \frac{1}{2f} \int_{-\infty}^{0} u_{1} e^{-irx} dx, \quad t_{1}^{+} &= \frac{1}{2f} \int_{-\infty}^{0} \uparrow_{1} e^{-irx} dx, \quad U_{2}^{+} &= \frac{1}{2f} \int_{-\infty}^{0} u_{2} e^{-irx} dx \\ & V_{2}^{+} &= \frac{1}{2f} \int_{-\infty}^{0} \uparrow_{2} e^{-irx} dx, \quad y = 0 \quad (1.6) \\ & \xrightarrow{(+)}{\overline{\Gamma}}, \quad (-) - \\ & \cdot X_{0}, Y_{0} & \cdot \quad (1.4) \quad (1.5) \end{split}$$

$$\begin{array}{l} \vdots \\ t^{+} - U_{2}^{+} = U^{-}, t_{1}^{+} - V_{2}^{+} = V^{-} \\ a_{11} s_{1}^{+} t^{+} + a_{12} s_{1}^{+} t_{1}^{+} - \frac{\Omega_{1}^{-}}{s_{1}^{-}} + d_{1} = 0 \\ a_{21} s_{1}^{+} t^{+} + a_{22} s_{1}^{+} t_{1}^{+} - \frac{\Omega_{2}^{-}}{s_{1}^{-}} + d_{2} = 0 \end{array}$$

$$(1.8)$$

$$a_{11} = \frac{\check{S}^{2} \dots i}{r^{2} + s_{1}s_{2}} - \frac{\varkappa_{1}}{s_{1}} \frac{\check{S}^{2} \dots 2i}{(r^{2} + \varkappa_{1}\varkappa_{2})}, a_{22} = \frac{\dots is_{2}\check{S}^{2}}{s_{1}(r^{2} + s_{1}s_{2})} - \frac{\dots 2i\check{S}^{2}\varkappa_{2}}{s_{1}(r^{2} + \varkappa_{1}\varkappa_{2})}$$

$$a_{12} = \frac{\dots i}{s_{1}} \frac{r}{r^{2} + s_{1}s_{2}} \left[2s_{1}s_{2}b_{1}^{2} - (\check{S}^{2} - 2r^{2}b_{1}^{2}) \right] - \frac{\dots 2b_{2}^{2}ir}{s_{1}(r^{2} + \varkappa_{1}\varkappa_{2})} \left[2\varkappa_{1}\varkappa_{2} - \left(\frac{\check{S}^{2}}{b_{2}^{2}} - 2r^{2}\right) \right] \right]$$

$$(1.9)$$

$$\begin{split} a_{21} &= \frac{\cdots_{l}i^{\Gamma}}{S_{1}\left(r^{2} + S_{1}S_{2}\right)} \left[\tilde{S}^{2} - 2b_{1}^{2}r^{2} - 2b_{1}^{2}S_{1}S_{2}\right] - \frac{\cdots_{l}i^{\Gamma}}{S_{1}\left(r^{2} + x_{1}x_{2}\right)} \left[\tilde{S}^{2} - 2b_{2}^{2}r^{2} - 2b_{2}^{2}x_{1}x_{2}\right] \\ d_{1} &= \sum_{0}^{2} d_{1k} \left\{_{k} \cdot d_{2} = \sum_{0}^{2} d_{2k} \left\{_{k} \cdot d_{10} = \frac{X_{0}\tilde{S}^{2}S_{2} + Y_{0}a_{1}^{2}\overline{r}S_{1}(S_{1} - S_{2})}{2fa_{1}^{2}\overline{r}S_{1}S_{2}S_{1}^{-}\left(\overline{r}^{2} + S_{1}S_{2}\right)} \right] \\ d_{20} &= \frac{Y_{0}\tilde{S}^{2}S_{1} + X_{0}b_{1}^{2}\overline{r}S_{2}(S_{1} - S_{2})}{2fb_{1}^{2}\overline{r}S_{1}S_{2}S_{1}^{-}\left(\overline{r}^{2} + S_{1}S_{2}\right)}, d_{11} = -\frac{b_{1}^{2}(X_{0}\overline{r} + Y_{0}S_{1})}{2f\tilde{S}^{2}S_{1}S_{1}^{-}} \\ d_{12} &= -\frac{b_{1}^{2}(X_{0}S_{2} - Y_{0}\overline{r})}{2f\tilde{S}^{2}\overline{r}S_{1}^{-}}, d_{21} = -\frac{a_{1}^{2}(X_{0}\overline{r} + Y_{0}S_{1})}{2f\tilde{S}^{2}\overline{r}S_{1}^{-}} \\ d_{22} &= -\frac{a_{1}^{2}\left(-X_{0}S_{2} + Y_{0}\overline{r}\right)}{2f\tilde{S}^{2}S_{2}S_{1}^{-}} \\ \overline{u}^{1} &= \frac{rS_{2}}{r^{2} + S_{1}S_{2}} \left(t_{1}^{+} + \frac{r}{S_{2}}t^{+} - \sum_{0}^{2}\left(\overline{r}_{0}^{-} + \frac{r}{S_{2}}\frac{=(k)}{1}\right)\right) \\ \overline{u}^{1} &= \frac{rS_{2}}{r^{2} + S_{1}S_{2}} \left(\frac{S_{1}}{r}t^{+} - t_{1}^{+} - \sum_{0}^{2}\left(-\frac{=(k)}{0} + \frac{S_{1}}{r}\frac{=(k)}{u_{0}}\right)\right) \\ \overline{u}^{2} &= \frac{rX_{2}}{r^{2} + x_{1}X_{2}} \left(\frac{r}{X_{2}}U_{2}^{+} + V_{2}^{+}\right), \overline{u}^{2} = \frac{rX_{2}}{r^{2} + x_{1}X_{2}} \left(\frac{x_{1}}{r}U_{2}^{+} - V_{2}^{+}\right) \\ (1.2), (1.7), (1.7), (1.7), (1.4)$$

2.

(1.8).

(1.8) [2].

(1.8)
$$W^+ = GW^- + g$$
 (2.1)

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, d = a_{11}a_{22} - a_{21}a_{12}, g(r) = A^{-1}(r) \cdot \begin{pmatrix} -d_1 \\ -d_2 \end{pmatrix}$$
$$W^{+} = \begin{pmatrix} S_1^{+}t^{+} \\ S_1^{+}t_1^{+} \end{pmatrix}, S_1^{\pm} = \sqrt{\frac{\breve{S}}{a_1} \pm r}$$

 $\vec{r} \approx \infty . \qquad [2]$

$$\left|G^{-1}(+0)G(-0) - \right|^* E = 0$$
(2.4)

$$\}_{1}^{*} = \frac{\{2\}}{\{1\}}, \ \{k = \dots_{k}b_{k}^{2} + \dots_{3-k}b_{3-k}^{2}\frac{a_{3-k}^{2} - b_{3-k}^{2}}{a_{3-k}^{2} + b_{3-k}^{2}}, \ k = 1,2$$
(2.5)

$$\}^{*} = \exp(2ff_{2}) \qquad f_{2} = \frac{1}{2f} \ln \frac{\xi_{2}}{\xi_{1}}$$
(2.6)

$$G(\overline{r}),$$
, $\overline{r} \approx \infty$, (1.8),

. . ,

$$a_{11}^{0} \mathbf{S}_{1}^{+} \mathbf{t}^{+} - a_{12}^{0} i \operatorname{sgn} \mathbf{\Gamma} \mathbf{S}_{1}^{+} \mathbf{t}_{1}^{+} = -\frac{i\Omega_{1}^{-}}{\mathbf{S}_{1}^{-}}$$

$$a_{12}^{0} i \operatorname{sgn} \mathbf{\Gamma} \mathbf{S}_{1}^{+} \mathbf{t}^{+} - ia_{11}^{0} \mathbf{S}_{1}^{+} \mathbf{t}_{1}^{+} = -\frac{\Omega_{2}^{-}}{\mathbf{S}_{1}^{-}}$$

$$(2.7)$$

$$\begin{aligned} \dot{r}_{+}(\vec{r}) &= G_{3}(\vec{r}) t^{-}(\vec{r}) + g_{2}(\vec{r}) \end{aligned}$$
(2.8)

$$G_{2}(\vec{r}) &= \left(\left(\frac{a_{11} + a_{22}}{2} - \frac{a_{21} - a_{12}}{2} i \right) (\vec{s}_{1}^{+})^{2ij_{2}} + \left(\frac{a_{11} - a_{22}}{2} + \frac{a_{21} + a_{12}}{2} i \right) (\vec{s}_{1}^{+})^{-2ij_{2}} \right) \end{aligned}$$
(2.9)

$$t^{+}(\vec{r}) &= \left(\frac{\Phi_{1}^{+}}{\Psi_{1}^{+}} \right), t^{-}(\vec{r}) = \left(\prod_{1}^{-} \\ \Pi_{2}^{-} \right), g_{2}(\vec{r}) = \left(-\left(d_{1} + id_{2} \right) \\ -\left(d_{1} - id_{2} \right) \right) \end{aligned}$$
(2.9)

$$G_{3}(\vec{r}) &= G_{2}^{-1} \cdot \left(\left(s_{1}^{-} \right)^{2ij_{2}} & 0 \\ 0 & (s_{1}^{-})^{-2ij_{2}} \right) \end{aligned}$$
(2.9)

$$S_{1}^{+}t^{+} + is_{1}^{+}t_{1}^{+} = \Phi_{2}^{+}, \Phi_{2}^{+} = \Phi_{1}^{+}(\vec{s}_{1}^{+})^{2ij_{2}}, s_{1}^{+}t^{+} - is_{1}^{+}t_{1}^{+} = \Psi_{2}^{+} \end{aligned}$$
(2.10)

$$U_{2}(3) = \left(\frac{|\vec{r}|}{|\vec{r}|} \right) = (2,3) \qquad (2,3) = (2,3) \qquad (3,3) \qquad (3,3)$$

,

[2]

$$t\left(\overline{\Gamma}\right) = \frac{X\left(\overline{\Gamma}\right)}{2fi} \int_{-\infty}^{\infty} \frac{\left(X^{+}\left(\frac{r}{2}\right)\right)^{-1} g_{2}\left(\frac{r}{2}\right) d^{r}}{r}$$

$$- X\left(\overline{\Gamma}\right) = X^{+}\left(\overline{\Gamma}\right) X^{-}\left(\overline{\Gamma}\right)$$

$$(2.11)$$

$$X^{+}(\overline{\Gamma}) = G_{3}(\overline{\Gamma})X^{-}(\overline{\Gamma}), \ G_{3}(\overline{\Gamma}) = X^{\pm}(\overline{\Gamma})$$
[2],
$$X^{-}(\overline{\Gamma})$$
(2.12)

$$\begin{aligned} X^{-}(\mathbf{r}) &= \frac{1}{2fi} \int_{-\infty}^{\infty} \frac{G_{3}^{-1}(\overline{\mathbf{r}})G_{3}(\cdot) - \mathbf{E}}{\cdot -\overline{\mathbf{r}}} X^{-}(\cdot) d^{\prime} = \mathbf{x}(\overline{\mathbf{r}}) \end{aligned} \tag{2.13} \\ \mathbf{x}(\overline{\mathbf{r}}) &= \frac{1}{2fi} \int_{-\infty}^{\infty} \frac{G_{3}^{-1}(\overline{\mathbf{r}})G_{3}(\cdot) - \mathbf{E}}{\cdot -\overline{\mathbf{r}}} X^{-}(\overline{\mathbf{r}}) = \mathbf{r} \otimes \infty, \mathbf{E} \\ &; \mathbf{r} \otimes \infty, G_{3}(\overline{\mathbf{r}}) = \mathrm{const}, \mathbf{X} \\ \mathbf{x}^{-}(\overline{\mathbf{r}}) = \mathrm{const}, \mathbf{x}(\overline{\mathbf{r}}) = \mathbf{E}. \\ (2.10), &; \mathbf{x}^{-}(\overline{\mathbf{r}}) = \mathrm{const}, \mathbf{x}(\overline{\mathbf{r}}) = \mathbf{E}. \\ (2.14) \\ &\left(\frac{\Omega_{1}^{-}}{\Omega_{2}^{-}}\right) = \left(-\frac{1}{2i}(S_{1}^{-})^{2ij_{2}+1} - \frac{1}{2i}(S_{1}^{-})^{-2ij_{2}+1}\right) \\ &\int_{-\infty}^{\overline{\mathbf{r}}} \int_{-\infty}^{\infty} \frac{1}{2i}(S_{1}^{-})^{2ij_{2}+1} - \frac{1}{2i}(S_{1}^{-})^{-2ij_{2}+1}\right) \\ &\left(\frac{\Omega_{1}^{-}}{\Omega_{2}^{-}}\right) = \left(-\frac{1}{2i}(S_{1}^{-})^{2ij_{2}+1} - \frac{1}{2i}(S_{1}^{-})^{-2ij_{2}+1}\right) \\ &\int_{-\infty}^{\overline{\mathbf{r}}} \int_{-\infty}^{\infty} \frac{1}{2i}(S_{1}^{-})^{2ij_{2}+1} - \frac{1}{2i}(S_{1}^{-})^{-2ij_{2}+1}\right) \\ &\left(\frac{\overline{\mathbf{r}}}_{1xy} + \overline{\overline{\mathbf{r}}}_{1xy}^{-} - \overline{\overline{\mathbf{r}}}_{2xy} = \Omega_{1}^{-}, \overline{\overline{\mathbf{r}}}_{1xy} + \overline{\overline{\mathbf{r}}}_{1yy}^{-} - \overline{\overline{\mathbf{r}}}_{2xy} = \Omega_{2}^{-} \\ &x \to 0, \ \overline{\mathbf{r}} \to \infty, \ X^{-}(\overline{\mathbf{r}}) \to 1 \\ &\left(\overline{\overline{\mathbf{r}}}_{1yy} + \overline{\overline{\mathbf{r}}}_{1yy}^{-} - \overline{\overline{\mathbf{r}}}_{2xy}\right) = \\ &= -\frac{1}{2fi} \int_{-\infty}^{+\infty} d^{2}d^{2}\int_{-\infty}^{\infty} d^{2}\overline{\mathbf{r}} \frac{i}{2\sqrt{\mathbf{r}}} \left(i^{1+2ij_{2}}(\overline{\mathbf{r}})^{ij_{2}} - i^{1-2ij_{2}}(\overline{\mathbf{r}})^{-ij_{2}}}\right) \\ &\int_{-\infty}^{\infty} \frac{(\mathbf{x}^{+}(\cdot))^{-1}g_{2}(\cdot)t^{I}}{2fi} d\mathbf{r} \end{aligned}$$

$$g_{2}(') = -\tilde{S}^{-5/2} \begin{pmatrix} \sum_{k=0}^{2} (d_{1k}('_{0}) + id_{2k}('_{0}))e^{s\binom{0}{k}} \\ \sum_{k=0}^{2} (d_{1k}('_{0}) - id_{2k}('_{0}))e^{s\binom{0}{k}} \end{pmatrix}$$

$$d_{1k}, \ d_{2k} \qquad (*) \qquad (1.9). \qquad (2.15)$$

$$\begin{pmatrix} \overline{T} & \overline{T}^{0} & \overline{T} \\ \overline{T}_{1xy} + \overline{T}_{1xy} - \overline{T}_{2xy} \\ \overline{T}_{1yy} + \overline{T}_{1yy} - \overline{T}_{2yy} \end{pmatrix} = \\ = \operatorname{Re} \frac{q}{\sqrt{f} ia_{1}} \int_{-\infty}^{\infty} \left\{ X^{+} \begin{pmatrix} t \\ 0 \end{pmatrix} \right\}^{-1} \begin{pmatrix} \sum_{k=0}^{2} (d_{1k} \begin{pmatrix} t \\ 0 \end{pmatrix} + id_{2k} \begin{pmatrix} t \\ 0 \end{pmatrix}) \cdot (t + {t \\ k}^{0})^{\frac{1}{2}} H \left(t + {t \\ k}^{0} \right) \\ \sum_{k=0}^{2} (d_{1k} \begin{pmatrix} t \\ 0 \end{pmatrix} - id_{2k} \begin{pmatrix} t \\ 0 \end{pmatrix}) \cdot (t + {t \\ k}^{0})^{\frac{1}{2}} H \left(t + {t \\ k}^{0} \right) \\ d^{t}_{0} \end{pmatrix}$$
(2.16)

$$q = \begin{pmatrix} -i^{\frac{1}{2}+if_2} & \frac{x^{-\frac{1}{2}-if_2}}{\Gamma\left(\frac{1}{2}-if_2\right)} & -i^{\frac{1}{2}-if_2} & \frac{x^{-\frac{1}{2}+if_2}}{\Gamma\left(\frac{1}{2}+if_2\right)} \\ \frac{3}{i^{\frac{3}{2}+if_2}} & \frac{x^{-\frac{1}{2}-if_2}}{\Gamma\left(\frac{1}{2}-if_2\right)} & i^{\frac{3}{2}-if_2} & \frac{x^{-\frac{1}{2}+if_2}}{\Gamma\left(\frac{1}{2}+if_2\right)} \end{pmatrix}$$

$$x = +0$$
,

[3].

1. . ., . ., . ., . . . 2005. .105. N4. 2. . .

. .: , 1970. 379 .

.

- Rice J.R., Elastic fracture mechanics concepts for interfacial crakes. J. Appl. Mech. Asme. E. 1988. Vol. 55. PP. 98-103.
- Hakobyan V.N., Sahakyan A. V. and Sargsyan A. H., The plane deformation state of elastic plane with finite rigid inclusion under harmonic loading. The problems of dynamics of interaction of deformable media. V international conference, October 1-7, Goris, 2005, p. 56-60.
- 5.

-97», 2007, .244.

6. Bagdoev A.G., Martirosyan A.N., Kostandyan K.S. Dinunts A.S. The analytical and numerical solution of second, third, fourth and sixth order Wienner-Hopf system in unsteady elasticity mixed boundary problems, «

»

. «

: 2007, . 458-461.

:

, $\tau_0(x) (|x| \le a),$ [-a,a] $\tau(x)$

 $\tau(x)$ [1].

•

,

 $\tau(x)$.

$$\frac{\partial u_z^{(1)}(x,\pm h)}{\partial x} = \frac{\partial u_z^{(2)}(x,\pm h)}{\partial x}, \quad x \in [-a,a]$$
(1)
$$u_z^{(i)}(x,\pm h) (i=1,2) - , ,$$

$$Oz.$$

$$\frac{\partial u_z^{(2)}(x)}{\partial x} = \frac{1}{4G_2h} \int_{-a}^{a} \left[cth \frac{\pi}{4h} (x-s) - th \frac{\pi}{4h} (x-s) \right] \tau(s) ds$$
(2)

$$\frac{\partial u_z^{(1)}(x)}{\partial x} = \frac{1}{G_1 h_1} \int_{-a}^{x} \left[\tau_0(s) - \tau(s) \right], \qquad (3)$$

$$G_1 \quad G_2 - \qquad , \qquad .$$

$$\int_{-a}^{a} \tau(s) ds = \int_{-a}^{a} \tau_{0}(s) ds$$
(1),
(1),
(1),
(1),

$$\int_{-a}^{a} \left[cth \frac{\pi}{4h} (s-x) - th \frac{\pi}{4h} (s-x) \right] \tau(s) ds = \lambda \int_{-a}^{a} \left[\tau(s) - \tau_0(s) \right] ds$$
(5)
$$\lambda = 4G_2 h / G_1 h_1.$$

$$\xi = \eta$$

$$\xi = \frac{\pi x}{4h}, \ \eta = \frac{\pi s}{4h}, \ \alpha = \frac{\pi a}{4h}, \ \xi, \eta \in [-\alpha, \alpha]$$

$$u = th\xi/th\alpha, v = th\eta/th\alpha, \quad u, v \in [-1, 1]$$

$$(4) \quad (5)$$

$$\vdots$$

$$\int_{-1}^{1} \left[\frac{1}{v-u} + K(u, v)\right] \phi(v) dv = \pi P(u), \ (|u| < 1)$$
(6)

$$\int_{-1}^{1} \frac{\phi(v)dv}{1 - v^2 th^2 \alpha} = C$$
:
(7)

$$K(u,v) = \frac{u}{cth^{2}\alpha - uv} + \frac{\lambda th\alpha \operatorname{sgn}(v - u)}{2(1 - v^{2}th^{2}\alpha)}$$

$$\varphi(u) = \tau \left(\frac{2h}{\pi} \ln \frac{1 + uth\alpha}{1 - uth\alpha}\right), \quad \varphi_{0}(u) = \tau_{0} \left(\frac{2h}{\pi} \ln \frac{1 + uth\alpha}{1 - uth\alpha}\right)$$

$$p(u) = -\frac{\lambda}{\pi} \int_{-1}^{u} \tau_{0} \left(\frac{2h}{\pi} \ln \frac{1 + vth\alpha}{1 - vth\alpha}\right) \frac{th\alpha dv}{1 - v^{2}th^{2}\alpha} = -\frac{\lambda}{\pi} \int_{-1}^{u} \varphi_{0}(v) \frac{th\alpha dv}{1 - v^{2}th^{2}\alpha}$$

$$C = \int_{-1}^{1} \frac{\varphi_{0}(v) dv}{1 - v^{2}th^{2}\alpha}$$

$$(6)$$

$$\varphi(u) = \frac{U(u)}{\sqrt{1 - u^{2}}}$$

$$(9)$$

$$U(u) - [-1;1].$$
(9) (6) (7),

$$\int_{-1}^{1} \left[\frac{1}{v-u} + K(u,v) \right] \frac{U(u)}{\sqrt{1-v^2}} dv = \pi P(u), \quad (|u| < 1)$$
(10)

$$\int_{-1}^{1} \frac{U(v)dv}{\sqrt{1 - v^2}(1 - v^2th^2\alpha)} = C$$
(11)

[3], (10)-(11)

$$\sum_{m=1}^{M} a_m U(v_m) \left[\frac{1}{v_m - u_n} + K(u_n, v_m) \right] = \pi P(u_n), \quad n = 1, 2, \dots M - 1$$
(12)

$$\sum_{m=1}^{M} a_m \frac{U(v_m)}{1 - v_m^2 t h^2 \alpha} = C.$$
(13)

(9), ,
[-1,1]
$$(1-u^2)^{-1/2}$$

 $T_n(v) = \cos(n \arccos v)$. $T_M(v)$

-

$$v_m = \cos \frac{2m-1}{2M} \pi$$
, $(m = 1, 2, ..., M)$ (14)
 $a_m = \pi/M$.

$$\int_{-1}^{1} \frac{T_{M}(v)dv}{(v-u)\sqrt{1-v^{2}}} = \begin{cases} 0, & M = 0\\ \pi U_{M-1}(u), & M > 0 \end{cases} (|u| < 1)$$

$$u_{n} \qquad \qquad U_{M-1}(u) = 0,$$
(15)

$$u_n = \cos \pi n / M$$
, $(n = 1, 2, ..., M - 1)$ (16)
, (12) -(13)
(10)

•

24

x : 0019, , . : (+37410) 568188 -mail: <u>mechins@sci.am</u>

. - . ., . . X

. - . ., -mail: <u>mirzoyan@ysu.am</u>

,

_

•

-

-:

,

•••

323
, -(). -

Or,

$$\begin{bmatrix} = \pm 0 \\ (L' = R_{+} \setminus L; R_{+} = (0, \infty)): \\ -\ddagger_{[z]}|_{[=+0} = T_{+}(r) = \begin{cases} \ddagger_{+}^{(1)}(r) & (r \in L_{1}) \\ \ddagger_{+}^{(2)}(r) & (r \in L_{2}) \\ \ddagger(r) & (r \in L') \\ \ddagger(r) & (r \in L') \end{cases} \\ -\ddagger_{[z]}|_{[=-0} = T_{-}(r) = \begin{cases} \ddagger_{-}^{(1)}(r) & (r \in L_{1}) \\ \ddagger_{-}^{(2)}(r) & (r \in L_{2}) \\ \ddagger(r) & (r \in L') \\ \ddagger(r) & (r \in L') \end{cases} \\ L_{2} \qquad : \end{cases}$$

$$(1)$$

,

$$L_{2} :$$

$$u_{z}^{+}(r, [)|_{[=+0} = u_{z}^{-}(r, [)|_{[=-0} = u_{k} = \text{const}$$

$$r \in (c_{k}, d_{k}) \ (k = \overline{1, N_{2}})$$

$$[=r, [=-s:$$
(2)

$$u_{z}^{+}(r,[)|_{[=r]} = 0; \qquad u_{z}^{-}(r,[)|_{[=-s]} = 0$$
 (3)

 $u_z^{\pm}(r,[)$ – , $\Omega_r \quad \Omega_s$,

$$\frac{\partial^2 u_z^{\pm}(r,[))}{\partial r^2} + \frac{1}{r} \frac{\partial u_z^{\pm}(r,[))}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u_z^{\pm}(r,[))}{\partial [^2} = 0$$
(4)

$$\Omega(r) = T_{+}(r) + T_{-}(r); \quad h(r) = \frac{du_{z}^{+}(r,+0)}{dr} + \frac{du_{z}^{-}(r,-0)}{dr}$$
$$t(r) = T_{+}(r) - T_{-}(r) = \begin{cases} \mathbb{E}(r) & (r \in L_{2}) \\ t_{+}^{(1)}(r) - t_{-}^{(1)}(r) & (r \in L_{1}) \\ 0 & (r \in L') \end{cases}$$
(5)

$$w(r) = \frac{du_z^+(r,+0)}{dr} - \frac{du_z^-(r,-0)}{dr} = \begin{cases} \{(r) & (r \in L_1) \\ 0 & (r \in R_+/L_1) \end{cases}$$
(6)

$$r, \qquad (4) \qquad (1)-(3)$$

$$(5)-(6), \qquad [2],$$

$$\left\{ \frac{1}{f} \int_{L_{1}} \frac{w(r_{0})dr_{0}}{\ln r_{0} - \ln r} + \frac{1}{f} \int_{L_{1}} K\left(\ln \frac{r_{0}}{r}\right) w(r_{0})dr_{0} - \frac{(G_{+} - G_{-})r}{2G_{+}G_{-}} t(r) - \frac{1}{f} \int_{L_{1}} M\left(\ln \frac{r_{0}}{r}\right) t(r_{0})dr_{0} - \frac{-\frac{1}{f} \int_{L_{2}} M\left(\ln \frac{r_{0}}{r}\right) t(r_{0})dr = -\frac{(G_{+} + G_{-})r}{2G_{+}G_{-}} \Omega(r); \quad (r \in R_{+}) \right\}$$

$$\left\{ -\frac{G_{+} - G_{-}}{2} w(r) - \frac{G_{+}G_{-}}{f} \int_{L_{1}} M\left(\ln \frac{r_{0}}{r}\right) w(r_{0})dr_{0} + \frac{1}{f} \int_{L_{1}} \frac{t(r_{0})dr_{0}}{\ln r_{0} - \ln r} + \frac{1}{f} \int_{L_{2}} \frac{t(r_{0})dr_{0}}{\ln r_{0} - \ln r} + \frac{1}{f} \int_{L_{1}} Q\left(\ln \frac{r_{0}}{r}\right) t(r_{0})dr_{0} + \frac{1}{f} \int_{L_{2}} Q\left(\ln \frac{r_{0}}{r}\right) t(r_{0})dr_{0} = \frac{(G_{+} + G_{-})r}{2} h(r); \qquad (r \in R_{+})$$

$$\begin{split} & K\left(\ln\frac{r_0}{r}\right) = \int_0^\infty \frac{G_+[1-\operatorname{th}(\mathbb{S}s)] + G_-[1-\operatorname{th}(\mathbb{\Gamma}s)]}{G_+\operatorname{th}(\mathbb{S}s) + G_-\operatorname{th}(\mathbb{\Gamma}s)} \sin\left(s\ln\frac{r_0}{r}\right) ds \\ & M\left(\ln\frac{r_0}{r}\right) = \int_0^\infty \frac{\operatorname{th}(\mathbb{S}s) - \operatorname{th}(\mathbb{\Gamma}s)}{G_+\operatorname{th}(\mathbb{S}s) + G_-\operatorname{th}(\mathbb{\Gamma}s)} \cos\left(s\ln\frac{r_0}{r}\right) ds \\ & Q\left(\ln\frac{r_0}{r}\right) = \int_0^\infty \frac{G_+\operatorname{th}(\mathbb{S}s)[\operatorname{th}(\mathbb{\Gamma}s) - 1] + G_-\operatorname{th}(\mathbb{\Gamma}s)[\operatorname{th}(\mathbb{S}s) - 1]}{G_+\operatorname{th}(\mathbb{S}s) + G_-\operatorname{th}(\mathbb{\Gamma}s)} \sin\left(s\ln\frac{r_0}{r}\right) ds \\ & , \qquad , \qquad (7) \qquad L_1, \\ & L_2, \qquad () \qquad : \end{split}$$

$$\begin{cases} \frac{1}{f} \int_{L_{1}} \frac{\{(r_{0})dr_{0}}{\ln r_{0} - \ln r} + \frac{1}{f} \int_{L_{1}} K\left(\ln \frac{r_{0}}{r}\right) \{(r_{0})dr_{0} - \frac{1}{f} \int_{L_{2}} M\left(\ln \frac{r_{0}}{r}\right) E(r_{0})dr_{0} = \frac{1}{f} \int_{L_{1}} M\left(\ln \frac{r_{0}}{r}\right) [t^{(1)}_{+}(r_{0}) - t^{(1)}_{-}(r_{0})]dr_{0} - \frac{1}{f} \int_{L_{2}} M\left(\ln \frac{r_{0}}{r}\right) E(r_{0})dr_{0} + \frac{1}{f} \int_{L_{2}} \frac{G(r_{0})dr_{0}}{\ln r_{0} - \ln r} + \frac{1}{f} \int_{L_{2}} Q\left(\ln \frac{r_{0}}{r}\right) E(r_{0})dr_{0} = -\frac{1}{f} \int_{L_{1}} \frac{E(r_{0})dr_{0}}{\ln r_{0} - \ln r} + \frac{1}{f} \int_{L_{2}} Q\left(\ln \frac{r_{0}}{r}\right) E(r_{0})dr_{0} = -\frac{1}{f} \int_{L_{1}} \frac{[t^{(1)}_{+}(r_{0}) - t^{(1)}_{-}(r_{0})]dr_{0}}{\ln r_{0} - \ln r} - \frac{1}{f} \int_{L_{1}} Q\left(\ln \frac{r_{0}}{r}\right) [t^{(1)}_{+}(r_{0}) - t^{(1)}_{-}(r_{0})]dr_{0}; \quad (r \in L_{2}) \end{cases}$$

$$(8)$$

$$(8)$$

$$(8)$$

$$\int_{a_{k}}^{b_{k}} \{(r)dr = 0, \quad (k = \overline{1, N_{1}}) \qquad (9)$$

,

_

$$\int_{c_k}^{d_k} \mathbb{E}(r) dr = P_k, \quad (k = \overline{1, N_2})$$
(10)
(7)

,

:

:

$$\begin{aligned} \ddagger(r) &= -\frac{G_{+}G_{-}}{fr(G_{+}+G_{-})} \int_{L_{1}} \frac{\{(r_{0})dr_{0}}{\ln r_{0} - \ln r} - \frac{G_{+}G_{-}}{f(G_{+}+G_{-})} \int_{L_{1}} K\left(\ln\frac{r_{0}}{r}\right) \{(r_{0})dr_{0} + \\ &+ \frac{G_{+}G_{-}}{fr(G_{+}+G_{-})} \int_{L_{1}} M\left(\ln\frac{r_{0}}{r}\right) [\ddagger^{(1)}_{+}(r_{0}) - \ddagger^{(1)}_{-}(r_{0})] dr_{0} + \\ &+ \frac{G_{+}G_{-}}{fr(G_{+}+G_{-})} \int_{L_{2}} M\left(\ln\frac{r_{0}}{r}\right) [\ddagger(r_{0})dr_{0}; \qquad (r \in L') \\ &, \end{aligned}$$

(8)-(10)		(8)	(9)-(10). (11).
2.		(8) = (10) (< = ln r_0 , y =	(8) $\ln r)$,
$((e^{a_k}, e^{b_k}), (k (-1;1)),$	$x = \overline{1, N_1}))$	$((e^{c_k}, e^{d_k}), (k = \overline{1, N_2}))$	
(8)-	-(10)	, -	(-1;1). [3,4,5]
1. .: 2.	, 1963. ,		
2007.	95- 	."	, 25-28 ,
3.	• •,	•••, ••	. 1976. 443 .

4. Erdogan F., Gupta G.D., Cook T.S. The numerical solutions of singular integral equations. Methods of Analysis and solution of Crack Problems; pp. 368-425. Noordhoff Intern. Publ., Leyden, 1973.

 Theocaric P.S., Iokamidis N.I. Numerical Integration Methods for the solution of singular Integral Equations.//Quart. Appl. Math., vol XXXV, No1, pp. 173-185, 1977

K. .- . ., : ,0019, , .

,24

: (37410)-43-16-52 E-mail: mechins@sci.am

· · · ·,				
:	, 0019,	,		, 24
E-mail: mech	ins@sci.am			

[1-3 .]

•

,

.

)

(

2mm [5, .225].

1.

,

$$\begin{aligned} & \dagger_{x} = c_{11}e_{x} + c_{12}e_{y} - e_{1}E_{3} , & D_{1} = V_{1}E_{1} \\ & \dagger_{y} = c_{12}e_{x} + c_{22}e_{y} - e_{2}E_{3} , & D_{2} = V_{2}E_{2} \\ & \dagger_{xy} = c_{66}e_{xy}, & D_{1} = e_{1}e_{x} + e_{2}e_{y} + V_{3}E_{3} \end{aligned}$$
(1.1)

,

$$\Phi = F\left(x, y, z\right) \left(1 - \frac{4}{h^2} z^2\right)$$
(1.2)

$$\operatorname{rot} \overline{E} = 0 \ , \ \operatorname{div} \overline{D} = 0 \tag{1.3}$$

$$\mathsf{v}_1 \frac{\partial^2 F}{\partial x^2} + c^2 \mathsf{v}_2 \frac{\partial^2 F}{\partial y^2} + \frac{h^2}{8} \left(e_1 \frac{\partial^2 w}{\partial x^2} + c^2 e_{21} \frac{\partial^2 w}{\partial y^2} \right) - \mathsf{v} F = 0$$
(1.4)

$$\frac{\partial^4 w}{\partial x^4} + 2c^2 d_1 \frac{\partial^4 w}{\partial x^2 \partial y^2} + c^4 d_2 \frac{\partial^4 w}{\partial y^4} + \\
+ d_3 \left(e_1 \frac{\partial^2 F}{\partial x^2} + c^2 e_2 \frac{\partial^2 F}{\partial y^2} \right) + \frac{\partial^2 w}{\partial t^2} = q\left(x, y, t\right)$$
(1.4) (1.5) $x \quad y \left(0 \le x \le 1, 0 \le y \le 1 \right), \ddagger -$

$$\begin{aligned} & \ddagger = \frac{h^2 C_{11}}{12 \dots a^4} , \ c = \frac{a}{b} , \ d_1 = \frac{c_{12} + 2c_{66}}{c_{11}} , \ d_2 = \frac{c_{22}}{c_{11}} \\ & d_3 = \frac{8a^2}{h^2 c_{11}} , \ q = \frac{12a^4}{h^3 c_{11}} Z \end{aligned}$$
(1.6)

2.

:

•

,

•

(1.4) (1.5)
$$\ddagger = \ddagger$$

•

$$w/_{\ddagger} = \ddagger_1 = f_2(x, y), \qquad \frac{\partial w}{\partial \ddagger}/_{\ddagger} = \ddagger_1 = \{2(x, y)\}$$

$$(2.2)$$

,

$$(w,F) = \sum_{m,n=1}^{\infty} (w_m, F_m) \sin mf x \sin nf yJ$$
(2.3)

$$\frac{d^2 w_{mn}}{dt^2} + \tilde{S}_{mn}^2 w_{mn} = q_{mn}(t) = 4 \int_{0}^{1} \int_{0}^{1} q \sin mf \, x \sin nf \, y dx dy \qquad (2.4)$$

$$, \qquad q_{mn}(t) \quad (\ldots q) \quad - \qquad ,$$

$$\tilde{S}_{m}^{2} = \left(m^{4} + 2c^{2}d_{1}m^{2}n^{2} + c^{4}d_{2}n^{4}\right)f^{4} + \frac{h^{2}d_{3}f^{4}}{8} \frac{\left(e_{1}m^{2} + c^{2}e_{2}n^{2}\right)^{2}}{h^{2}f^{2}\left(\nu_{1}m^{2} + c^{2}\nu_{2}n^{2}\right) + 12a^{2}\nu_{3}}$$
(2.4)
(2.1)
(2.5)

$$w_{mn}(\ddagger) = a_{mn} \cos \tilde{S}_{mn} \ddagger + \frac{b_{mn}}{\tilde{S}_{mn}} \sin \tilde{S}_{mn} \ddagger + \frac{1}{\tilde{S}_{mn}} \int_{0}^{\ddagger} q_{mn}(\#) \sin \tilde{S}_{mn}(\ddagger - \#) d_{\#}$$

$$a_{mn} \quad b_{mn} -$$
(2.1).
(2.2)

(2.6),

,

3.

•

•

$$w_{mn}\left(\ddagger_{1}\right) = \frac{dw_{mn}\left(\ddagger_{1}\right)}{d\ddagger} = 0 \tag{2.7}$$
$$q_{mn}$$

$$\int_{0}^{t_{1}} q_{mn} \cos \check{S}_{mn''} d_{''} \int_{0}^{t_{1}} q_{mn} \sin \check{S}_{mn''} d_{''}$$
(2.8)

$$I = \int_{0}^{t_{1}} \int_{0}^{1} \int_{0}^{1} q^{2}(x, y, \ddagger) dx dy d\ddagger$$
(2.9)
$$q_{mn}.$$

$$\Phi = q^{2} + \Gamma q \cos \check{S} \ddagger + S q \sin \check{S} \ddagger$$
(2.10)

$$q = -\frac{1}{2} (r \cos \tilde{S} \ddagger + S \sin \tilde{S} \ddagger)$$

$$r = \frac{\Delta_1}{\Delta}, \quad S = \frac{\Delta_2}{\Delta}, \quad \Delta = (2\tilde{S} \ddagger_1)^2 + 2(\cos \tilde{S} \ddagger_1 - 1)$$

$$\Delta_1 = 8\tilde{S} (a\tilde{S}u_1 - bu_2), \quad \Delta_2 = 8\tilde{S} (bu_1 - a\tilde{S}u_3)$$

$$u_1 = 1 - \cos 2\tilde{S} \ddagger_1, \quad u_2 = 2\tilde{S} \ddagger_1 - \sin 2\tilde{S} \ddagger_1, \quad u_3 = 2\tilde{S} \ddagger_1 + \sin 2\tilde{S} \ddagger_1$$
:
$$(2.11)$$

$$w_i = w(x_i, y_i), \quad i = 1, 2, \cdots, k$$
 (3.1)
, (2.9) ().

_

(1.4) (1.5) :

$$w(x, y) = \iint q(\langle , y \rangle K(x, y, \langle , y \rangle) d\langle dy$$
 (3.2)

$$K = \frac{4}{\tilde{S}_{mn}^2} \sin mf \, x \sin nf \, y \sin mf < \sin nf \, y$$
(2.9)
(3.1)
[6]

$$q_0(x, y) = \frac{1}{\dots_0^2} \sum_{i=1}^k X_i^0 K(x_i, y_i, \langle, y\rangle)$$
(3.3)

$$\lim_{k \to 0} = \min_{\substack{k \\ i=1 \\ i=1}} \iint_{0} \left[\sum_{i=1}^{k} X_{i} K(x_{i}, y_{i}, \langle , y \rangle) \right]^{2} d\langle dy$$

$$X_{i}^{0} - X_{i},$$

$$(3.4)$$

$$4.$$

$$\frac{d^{6}\Psi}{dx^{6}} - \Omega^{2} \frac{d^{4}\Psi}{dx^{4}} = \frac{1}{V_{1}} q , \quad \Omega^{2} = \frac{1}{V_{1}} \left(V + \frac{h^{2}}{8} d_{3} e_{1}^{2} \right)$$
(4.1)

$$w = V_1 \frac{d^2 \Psi}{dx^2} - V \Psi , F = -\frac{h^2}{8} e_1 \frac{d^2 \Psi}{dx^2}$$
(4.2)
(4.1)

$$\Psi = \sum_{i=1}^{4} C_i x^{i-1} + A \operatorname{ch} \Omega x + B \operatorname{sh} \Omega h + \frac{1}{\operatorname{V}_1 \Omega^4} \int_0^x q(\langle \cdot) \left[\frac{1}{\Omega} \operatorname{sh} \Omega (x - \langle \cdot) - (x - \langle \cdot) - \Omega^2 \frac{(x - \langle \cdot)^3}{6} \right] d\langle q(4.2) \rangle \right]$$

$$(4.2)$$

$$E_1 = \frac{h^2}{8} e_1 \frac{d^3 \Psi}{dx^3}$$
(4.4)

$$w = \int_{0}^{x} q(z) W_{1}(x, <) d < + \int_{0}^{1} q(<) W_{2}(x, <) d <$$

$$E_{1} = \int_{0}^{x} q(<) E_{1}^{(1)}(x, <) d < + \int_{0}^{1} q(<) E_{1}^{(2)}(x, <) d <$$
(4.5)
(4.5)

$$\left(\Psi = \Psi^{II} = \Psi^{IV} = 0 \right) \qquad E_1^{(i)}$$

$$E_1^{(1)} = D \left[ch\Omega \left(x - \zeta \right) - 1 \right] \quad , \quad D = \frac{h^2 e_1}{8 \vee_1 \Omega^2}$$

$$E_1^{(2)} = D \left[\left(1 - \zeta \right) - \frac{ch\Omega x}{sh\Omega} sh\Omega \left(1 - \zeta \right) \right]$$

$$(4.6)$$

$$, \qquad (3.1) - (3.4),$$

$$x = x_i \left(i = 1, 2, \cdots, k \right)$$

(3.1),

$$\int_{0}^{1} q(\langle) X_{i}(x_{i}, \langle) d \langle = E_{1i}, i = 1, 2, \cdots, k \qquad (4.7)$$

$$X_{i} \qquad X_{i} = \begin{cases} E_{1}^{(1)}(x_{i}, \langle) + E_{1}^{(2)}(x_{i}, \langle) & 0 \leq x \leq x_{i} \\ E_{1}^{(2)}(x_{i}, \langle) & x_{i} \leq x \leq 1 \\ , & (4.7), & (3.3) \end{cases}$$
(3.4).

,

(3.4).

.

,
$$(x = 0, 5)$$

 E_0 ,
 $q(x) = \frac{E_0}{D\Lambda} Z(x)$ (4.9)
 $\Lambda = \frac{1}{12} - \frac{3}{4\Omega} \operatorname{cth} \frac{1}{2} \Omega - \frac{2}{\Omega^2} - \frac{1}{8} \operatorname{csc} h^2 \frac{1}{2} \Omega$

(3.3)

$$Z(x) = \begin{cases} \frac{\mathrm{sh}\Omega x}{2\mathrm{sh}\frac{1}{2}\Omega} - x, & 0 \le x \le \frac{1}{2} \\ 1 - x - \frac{\mathrm{sh}\Omega(1 - x)}{2\mathrm{sh}\frac{1}{2}\Omega}, & \frac{1}{2} \le x \le 1 \end{cases}$$
(4.10)

_

$$\frac{d^2 w_m}{dt^2} + \tilde{S}_m^2 w_m = q_m = 2 \int_0^1 q \sin mf \, x dx$$

$$\tilde{S}_m^2 = \left(mf\right)^4 \left(1 + \frac{h^2 d_3 e_1^2}{8\left(v + v_1 m^2 f^2\right)}\right)$$
(4.11)

•

$$w_{m}(\ddagger) = a_{m} \cos \tilde{S}_{m} \ddagger + \frac{b_{m}}{\tilde{S}_{m}} \sin \tilde{S}_{m} \ddagger + \frac{1}{\tilde{S}_{m}} \int_{0}^{\ddagger} q_{m}(,) \sin \tilde{S}_{m}(\ddagger -,) d_{m}$$

$$(4.12)$$

$$E_{1}(x, \ddagger) = \sum_{m=1}^{\infty} D_{m} w_{m} \cos mf x , D_{m} = \frac{h^{2} e_{1}^{2} m^{3} f^{3}}{8 \left(v + v_{1} m^{2} f^{2} \right)}$$

$$, \qquad , \qquad \ddagger = \ddagger_{1}$$

$$(4.13)$$

$$E_{1}(x, \ddagger_{1}) = E_{0}(x) = \sum_{m=0}^{\infty} c_{m} \cos mf x$$
(4.14)

, .2.
(2.9)
,

$$I_m = \int_{0}^{t_1} q_m^2 d\ddagger$$
 (4.15)

$$((2.10)) q_m = -\frac{\Gamma_m}{2} \sin \check{S}_m (\ddagger_1 - \ddagger)$$
 (4.16)

$$\Gamma_{m} \left(\ddagger_{1} - \frac{\sin 2\check{S}_{m} \ddagger_{1}}{2\check{S}_{1}} \right) = 4\check{S}_{m} \left(a_{m} \cos \check{S}_{m} \ddagger_{1} + \frac{b_{m}}{\check{S}_{m}} \sin \check{S}_{m} \ddagger_{1} + \frac{c_{m}}{D_{m} m f} \right) (4.17)$$

$$q(x,\ddagger) = \sum_{m=1}^{\infty} q_m(\ddagger) \sin mf x$$
(4.18)

1.
 ...,
 ...,
 90-
 ...,

$$/$$
 .1999.
 .151-156.

 2.
 ...,
 ...,
 ...,

 $.//$
 ...,
 ...,
 ...,

 3.
 ...,
 ...,
 ...,

 $.//$
 ...,
 ...,
 ...,

 4.
 ...,
 ...,
 ...,

 $.//$
 ...,
 ...,
 ...,

 $.//$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$
 ...,
 ...,
 ...,

 $...,$

: 0019, -19, . . 24-.: (+37410), 56-82-01 E-mail: <u>mechins@sci.am</u>

· · ·, ,

. [1 2].

,

,

)

,

,

(

,

,

F ,

,

,

()

),

,

 G_{ij} ,

(

,

336

 $\begin{array}{cccc}
\Omega & (&) X', \\
X' = \{X_1, ..., X_m\} \\
T_i, & , & , \\
S, & Y' = \{(S), \\
, & , \\
\end{array}$

,

(

,

:

$$S = \sum_{p=1}^{N} X_{p} w_{pq}$$

$$p \quad q - \qquad ; \quad w_{pq} = -$$

).

(

 T_i

$$\sum_{p=1}^m (T_p - w_p)^2 = \min.$$

 $T_i)$

~

»

E A.

338

,

1. · ·, . ., • . // : : . . », 1998. .117-123. « 2. . ., . ., . ., . . . – 2003. 1. C.106-111. / 3. . . // NI , LabView National Instruments: . .-.: . . . –

, 2003. . 157-161.

,

. . ., , : 603024, . , . : (8-831-4-32-23-87)

E-mail: apotapov@sandy.ru

, .85,

,

.

, :

$$x^{2} + y^{2} = a\sqrt{x^{2} - y^{2}}$$

 $q = q_{0} \frac{r}{r_{0}}$
 $q_{0} - , r_{0} -$

(

:

,

,

•

)

PRO/

PRO/ENGINEERNG PRO/MECHANICA, ""

ENGINEERNG.

•

(

,

). ,

340

, (

,

)

.2. "

).

342

(

.3.

.4.

- 4. Richard L.O, Connor, M.D. "Arthroscopy". J.B. Lippinicot Company 1987, "Meniscal tears".

"

,

[2].

•••,

[1]

• •

•

Oz.

,

,

 $m\frac{d^{2}u}{dt^{2}} = -F, \ (t > 0) \tag{1}$

2.

 $\delta\Big|_{t=0} = 0, \ \left.\frac{d\mathsf{u}}{dt}\right|_{t=0} = V_0 \tag{2}$

 $\begin{array}{c}
(1) \\
(2), \\
, \\
, \\
& u F \\
& \vdots \\
& u F \\
\end{array}$

$$[3] k[p(r)]^{r} + \int_{0}^{a} \int_{0}^{2f} \frac{p(\dots)\dots d\dots d}{\sqrt{r^{2} + \dots^{2} - 2r\dots \cos\{}} = u - f(r), \ (0 \le r \le a)$$
(3)

$$2f \int_{0}^{a} rp(r)dr = F, \ (\pi = \frac{1 - \epsilon^{2}}{fE})$$

$$a - , E, \epsilon -$$
(4)

, p(r) -

,
$$k$$
 r - , , , $0.3 \le r \le 1.$ $f(r)$ - -

A.
$$f(r) = 0, \ (0 \le r \le a)$$
 (5)
B.

$$f(r) = k_1 r, \ (r \ge 0)$$
 (6)
 $k_1 - ;$

C. ,

$$f(r) = R - \sqrt{R^2 - r^2} \approx r^2 / 2R, \ (0 \le r << R)$$
(7)

.
(A)
$$U F$$

(3) (4) $p(r) U$,
(BC) $U F$
 $p(r), a U$

(3), (4)

R –

$$p(a) = 0 \tag{8}$$

(3)

$$K(\langle , \mathbf{y} \rangle) = \int_{0}^{2f} \frac{d\{}{\sqrt{r^{2} + ...^{2} - 2r...\cos\{}}, \ q(\langle \rangle) = 1 - \frac{f(a\langle \rangle)}{u} - \frac{k}{u} [p(a\langle \rangle)]^{\frac{1}{r}}$$
(10)
, (4), (10),
$$F = 2f \left(\frac{u}{k}\right)^{\frac{1}{r}} a^{2} \int_{0}^{1} \left[1 - \frac{f(a\mathbf{y})}{u} - q(\mathbf{y})\right]^{\frac{1}{r}} \mathbf{y} d\mathbf{y}$$
(11)
[3],

-

$$F_{0} = (k/a)^{1/r} a^{-2}F.$$

$$U F ,$$

$$q_{0}(<) \equiv 0 ,$$

$$(9)$$

$$q(<) = \frac{a_{u}}{u} \left(\frac{u}{k}\right)^{\frac{1}{r}} \int_{0}^{1} K(<,y) \left[1 - \frac{f(ay)}{u}\right]^{\frac{1}{r}} y dy \quad (0 \le < 1)$$

$$(A), \quad (11)$$

,

(5) (12)
$$U F$$

 $F = \frac{1}{2} u^{\frac{1}{r}} \left(1 - \frac{1}{2} u^{\frac{1}{r}} \right)$ (13)

$$\}_{1} = fa^{2}k^{-\frac{1}{r}}, \ \ \}_{2} = \frac{2a_{\pi}}{r}k^{-\frac{1}{r}}\int_{0}^{1}\int_{0}^{1}K(\langle,y)\langle yd\langle dy$$
(14)

$$(10) \quad \langle =1 \qquad (6), \quad (8) \quad (12),$$

u.

$$a = \frac{u}{k_1} \left(1 - \frac{s}{k_1} u^{\frac{1}{r}} \right), \quad s = _{\#} \cdot k^{-\frac{1}{r}} \int_{0}^{1} K(1, y) y dy$$
(16)

$$\frac{a_{"}}{\mathsf{u}} \left(\frac{\mathsf{u}}{k}\right)^{\frac{1}{r}} \int_{0}^{1} K(\langle,\mathbf{y}) \left[1 - \frac{a^{2} \mathsf{y}^{2}}{2R \mathsf{u}}\right]^{\frac{1}{r}} \mathsf{y} d\mathsf{y} = 1 - \frac{a^{2}}{2R \mathsf{u}}$$
(18)
$$a \qquad \mathsf{u}$$

$$a = \sqrt{2Ru} \left(1 - SRu^{\frac{1}{r}} \right)$$
(19)

(19), (7) (12), (11)

$$F = \mathbf{x}_{2} \mathbf{u}^{1+\frac{1}{r}} \left(1 - 2\mathbf{s} \mathbf{u}^{\frac{1}{r}-1} \right), \quad \left(\mathbf{x}_{2} = \frac{2fRr}{r+1} k^{-\frac{1}{r}} \mathbf{u}^{1+\frac{1}{r}} \right)$$
(20)
, $\mathbf{u} \quad F$ A, B C ,

3.

,

(1)

$$m\frac{dV}{du}\frac{du}{dt} = -F, \ (t > 0) \tag{21}$$

$$V = du / dt - t.$$
,
(2), (21)

$$m\frac{V_{0}^{2}}{2} - m\frac{V^{2}}{2} = \int_{0}^{1} Fdu \ (22)$$

$$u_{max} T$$

$$m\frac{V_{0}^{2}}{2} = \int_{0}^{u_{max}} Fdu, \ T = 2\int_{0}^{u_{max}} \left[V_{0}^{2} - \frac{2}{m}\int_{0}^{u} Fdu\right]^{-\frac{1}{2}} du \qquad (23)$$

$$u_{max}, \qquad (13), \ (17) \qquad (20)$$

$$F_{max}, \qquad , \qquad A, B C.$$

$$(13), \ (17) \qquad (20), \qquad (23) \qquad ,$$

A, B C Т V_0 -(1-r)/(1+r), -(1+r)/(1+3r) -1/(1+2r),A $0.3 \le r < 1$ B C, V_0 Т [1]. , . . , r =1, [2]. Т V_0 . [2], V_0 Т -1/3 -1/5. . . .: ,1965.448 ,1962.151 . 1. · · · ·, 2. · ·, · · . // . . (). 3. : . .- . ., . , .- . ., , , . : , 0019, , 24 .: (+374 10) 62 10 25 Email: mechins@sci.am , 24 , . .: (+374 10) 39 89 01 E-mail: mrtiko@mail.ru . .- . ., : ,0009, , . , 105 .: (+374 10) 39 89 01 E-mail: mrtiko@mail.ru

» (« »), « , , « » « ». ,) ((»). « » - « , , L ۷ , V << L.

•

,

 $x_i, i = 1, 2, 3$

 $\mathbf{n}.$ $\forall . \dots, \qquad \vdots \qquad ;$ $\mathbf{n}.$ $\mathbf{v} = \cdot \mathbf{n} \cdot (\mathbf{n} \cdot \mathbf{v} \cdot \mathbf{n}) \mathbf{n},$

•

 $\dagger_n = \mathbf{n} \cdot \cdot \mathbf{n} \,. \qquad \qquad = \mathbf{S} \mathbf{n} \,,$

$$\begin{bmatrix} V_{t} \end{bmatrix} \qquad \begin{bmatrix} V_{n} \end{bmatrix}$$

$$: = \begin{bmatrix} \mathbf{V}_{t} \end{bmatrix} / \mathbf{V} , \ \check{\mathbf{S}} = \begin{bmatrix} V_{n} \end{bmatrix} / \mathbf{V} .$$

$$\uparrow_{n} < 0:$$

$$= q |\uparrow_{n}| (/| |+\mathbf{y}) | | \ge q |\uparrow_{n}|, \ \check{\mathbf{S}} = 0$$

$$= 0 \qquad | | < q |\uparrow_{n}|, \ \check{\mathbf{S}} = 0$$

$$\Omega \ge 0: = \uparrow_{n} = 0.$$

$$\Omega = \begin{bmatrix} u_{n} \end{bmatrix} / \mathbf{V} -$$

$$; \ \dot{\Omega} = \check{\mathbf{S}}, \ q -$$

$$H(x), \qquad \langle F \rangle = F(x)H(F(x)),$$

•

•

,

,

n,

.1 .

,

$$\mathbf{e}^{\mathsf{x}} = (\mathbf{n} \otimes + \otimes \mathbf{n})/2, \ \mathbf{e}^{\mathsf{S}} = (\mathbf{n} \otimes + \otimes \mathbf{n})/2 = \mathsf{S}\mathbf{n} \otimes \mathbf{n}$$
$$\mathbf{e}$$

,
$$\mathbf{n}^{(s)}$$
, $s = 1, 2, 3$.
.1b.
 $\mathbf{n}^{(s)}$
 (s)
 (s)
 (s)
 $\mathbf{n}^{(i)}$, $s \neq i$
 $X_i^{(s)}$.
 (s)

-

$$X_i^{(s)} = 0$$
 $i \neq s$, $s = 1, 2, 3$.

_____:

٠,

(

)

$$D = \{(x, y, z) : x \in [0, a], y \in [0, b], 0 \le z \le h, h = h_1 + h_2 + h_3, h \le \min(a, b)\}$$

:

(.1).

$$\uparrow_{xz}^{I} = \uparrow_{yz}^{I} = \uparrow_{zz}^{I} = 0 \qquad z = h \tag{1}$$

$$u^{III}(z=0) = u^{-}(\langle,y\rangle)\exp(i\Omega t)$$

$$v^{III}(z=0) = v^{-}(\langle,y\rangle)\exp(i\Omega t) \tag{2}$$

$$w^{III}(z=0) = w^{-}(\langle ,y \rangle) \exp(i\Omega t), \langle =x/l, y = y/l, l = \min(a,b)$$

:

$$\begin{aligned} & \uparrow_{xz}^{I} = \uparrow_{xz}^{II}, \ \uparrow_{yz}^{I} = \uparrow_{yz}^{II}, \ \uparrow_{zz}^{I} = \uparrow_{zz}^{II}, \ u^{I} = u^{II}, \ v^{I} = v^{II}, \ w^{I} = w^{II} \\ & \uparrow_{xz}^{II} = \uparrow_{xz}^{III}, \ \uparrow_{yz}^{II} = \uparrow_{yz}^{III}, \ \uparrow_{zz}^{II} = \uparrow_{zz}^{III}, \ u^{II} = u^{III}, \ v^{II} = v^{III}, \ w^{II} = w^{III} \\ & z = h_{3} \end{aligned}$$
(3)

$$\frac{\partial \uparrow_{xx}^{(k)}}{\partial x} + \frac{\partial \uparrow_{xy}^{(k)}}{\partial y} + \frac{\partial \uparrow_{xz}^{(k)}}{\partial z} = \dots_k \frac{\partial^2 u^{(k)}}{\partial t^2} \qquad \left(x, y, z; u^{(k)}, \mathbf{v}^{(k)}, w^{(k)}\right)$$

$$\langle = x/l, \quad y = y/l, \quad ' = z/h; \\ U^{(k)} = u_x^{(k)}/l, \quad V^{(k)} = u_y^{(k)}/l, \quad W^{(k)} = u_z^{(k)}/l \\ h = h_1 + h_2 + h_3, \quad h_i - , \quad l = \min(a,b) \quad h << l, k - , \\ , \qquad - \quad V = h/l$$

$$[3]:$$

$$(U^{(k)}, V^{(k)}, W^{(k)}) = \vee^{s} (U^{(k,s)}, V^{(k,s)}, W^{(k,s)})$$

$$\uparrow^{(k)}_{ij} = \vee^{-1+s} \uparrow^{(k,s)}_{ij} \qquad s = \overline{0, N}; \qquad k = I, II, III$$

$$s = \overline{0, N} \qquad , \qquad ()$$

$$0 \qquad N. \qquad (7)$$

S

,

$$U^{(k,0)} = \frac{f_{U1}^{(k,0)}}{\Delta_U} \cos\sqrt{a_{55}^{(k)} \dots_k} \Omega_*' + \frac{f_{U2}^{(k,0)}}{\Delta_U} \sin\sqrt{a_{55}^{(k)} \dots_k} \Omega_*'$$
(9)

,

,

$$u^{-} = \text{const}, \ v^{-} = \text{const}, \ w^{-} = \text{const}$$
(11)
$$s = 0$$
:
$$u^{(k)} = \left(\frac{f_{U1}^{(k,0)}}{\Delta_U} \cos \sqrt{a_{55}^{(k)} \dots_k} \Omega_*' + \frac{f_{U2}^{(k,0)}}{\Delta_U} \sin \sqrt{a_{55}^{(k)} \dots_k} \Omega_*' \right) l \exp(i\Omega t)$$
(12)
$$\left(u^{(k)}, v^{(k)}, w^{(k)}; U, V, W; \ a_{55}^{(k)}, a_{44}^{(k)}, 1/A_{11}^{(k)}\right), \qquad k = I, II, III$$

:

(

)

. 3

(

,

(1) $\uparrow_{xz}^{I} = \uparrow_{yz}^{I} = \uparrow_{zz}^{I} = 0$ $u^{I} = v^{I} = w^{I} = 0$ z = h. , - (4) (P = U, V, W; j = 1, 2; k = I, II, III). , (11) (8), (9), (10) sin cos,

),

 \cos (-sin).

Mathematica 5

,

K. .- . ., : ,0019, , .

, 24

: (+37410) 52-48-90 E-mail: <u>ruben_hovh@yahoo.com</u>
0 () () \vec{v} \vec{F} m R Ŕ $\left| \vec{R} \right| = R$, $v = \left| \vec{v} \right|$. $\vec{F} = \frac{mv^2}{R^2} \vec{R} ,$ [1], :1) -**F** ; 2) **F** $\vec{Q} = \vec{F}$; 3) \vec{F} \vec{F} (, $\vec{N} = -\vec{Q}; 5)$); 4) $, \qquad \vec{F} = \vec{F} + \vec{N} ,$ $-\frac{mv^2}{R^2}\vec{R}\!=\!\vec{F}+\!\vec{N}$ (1) $\vec{F} = \vec{Q}$. , [2, .14], 1. $\left|\vec{F}\right| = \frac{m v_1^2}{R},$ $v_1 > 0$

$$v = v_{1} + v_{2}$$
[2], \vec{Q}

$$\frac{mv_{2}^{2}}{R} < \left|\vec{Q}\right| < \frac{m\vec{v}}{R}$$

$$\vec{v}$$
(2)
(3)

F

•

 \mathbf{v}_2

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2, \qquad |\vec{\mathbf{v}}_1| = \mathbf{v}_1, |\vec{\mathbf{v}}_2| = \mathbf{v}_2$$
 (4)

$$F = \frac{mv^2}{R} = \frac{m(v_1 + v_2)^2}{R} = \frac{mv_1^2}{R} + 2m\frac{v_1v_2}{R} + \frac{mv_2^2}{R}$$
(5)

(2), (4) ,
$$v_1, v_2$$

$$\vec{v} \qquad \overrightarrow{v}, \quad \vec{\tilde{v}} = \vec{v} + \vec{v}, \qquad \vec{F} = -\frac{mv_1^2}{R^2}\vec{R}$$
$$\vec{\tilde{F}} = -\frac{m(v_1 + v)^2}{R^2}\vec{R}, \qquad v \qquad \qquad \vec{v}$$

$$\pm |\overrightarrow{v}|.$$

$$(5) \qquad \widetilde{\vec{v}} \qquad \widetilde{\vec{F}}, ...$$

$$\widetilde{\vec{F}} = \frac{m(v+v)^2}{m(v+v)^2} = \frac{m(v_1+v)^2}{m(v_1+v)^2} + 2m\frac{(v_1+v)v_2}{m(v_1+v)v_2} + \frac{mv_2^2}{m(v_2+v)v_2}$$

$$(6)$$

$$F = \frac{(1 + 2m)^{2}}{R} = \frac{(1 + 2m)^{2}}{R} + 2m \frac{(1 + 2m)^{2}}{R} + \frac{(1 + 2m)^{2}}{R}$$
(6)
(5) (6)
(5) (6)
 $\vec{v} = \vec{v}$.

$$\vec{Q}$$
, ,

$Q = 2m \frac{ v_2 \vec{v} }{R}$;		(8)
(8) ,	ΔQ		
$\overrightarrow{\Delta Q} = -2m\left(_{2} \times \overrightarrow{\Delta v}\right)$			(9)
$\cdot x \cdot -$;	
$\left \begin{array}{c} - \\ 2 \end{array} \right = 2 = \frac{\mathbf{v}_2}{\mathbf{R}} ,$			-
	,	$\vec{z}_2 \times \vec{R} = \vec{v}_2.$	
$\overrightarrow{\Delta \mathbf{v}} = -\vec{\mathbf{v}}_1,$	(9)		
$\vec{\mathbf{Q}} = \vec{\mathbf{Q}} - \vec{\mathbf{Q}} = 2m(\vec{\mathbf{Q}} \times \vec{\mathbf{v}}_1) = \vec{\mathbf{F}}$			(10)
,			
[1].		[3,4]	(10) -
	\vec{v}_2 ,		-
\vec{v}_2	, \vec{v}_1		

 \vec{v}_1 , \vec{v}_2

,

 $\vec{Q} = \vec{F} \qquad (4)-(6) \qquad , \qquad : \qquad \vec{Q} = \vec{F} \qquad , \qquad : \qquad \vec{Q} = \vec{F} \qquad , \qquad : \qquad \vec{Q} = \vec{F} \qquad , \qquad : \qquad (11)$

(5)

$$\vec{Q} = \vec{F}_{2} + \vec{F} = \frac{mv_{2}}{R^{2}}\vec{R} + 2m(\vec{v}_{2} \times \vec{v}_{1})$$
, \vec{Q}
. (11)

,

[3, 4].

.:

•

,

1.

1987.320 .

•

,

,

,

,

.

.

$$U_{r}(r, z, \{ \}) = U(r, z) \cos \{$$

$$U_{\{}(r, z, \{ \}) = W(r, z) \sin \{$$

$$U_{z}(r, z, \{ \}) = V(r, z) \cos \{$$

$$P(r, z, \{ \})$$

$$P_{r} = -\mathbf{x}_{k} \cos\{ , P_{z} = 0 , F_{\{} = \mathbf{x}_{k} \sin_{\{} , (\mathbf{k} = 1, 2) \\ \mathbf{k} , \\ (\mathbf{k} = 1, 2) \\ \mathbf{k} , \\ \left\{F_{p}^{(n)}\right\} = \int_{v} [N]^{T} (A^{(n)})^{T} A^{(n)} [\overline{P}^{(n)}] dv = \int_{0}^{2f} (A^{(n)})^{T} A^{(n)} d\{ \int_{S} [N]^{T} [\overline{P}^{(n)}] ds$$
(1)
,
$$\mathbf{K} , \\ \mathbf{K} ,$$

а

r, z .

,

.

$$K_{ij}^{(n)} = f \int_{S} \left\{ \left[\overline{B}_{i}^{(n)} \right]^{T} \left[D \right] \left[\overline{\overline{B}}_{j}^{(n)} \right] + \left[\overline{\overline{B}}_{i}^{(n)} \right] \left[D \right] \left[\overline{B}_{j}^{(n)} \right] \right\} r dr dz$$

$$\begin{bmatrix} \overline{B}_{i}^{(n)} \\ \overline{B}_{i}^{(n)} \end{bmatrix} \qquad [3]$$

$$(2-3)$$

$$\overline{F}_{i}^{(1)} = \begin{cases} \overline{R}_{ii}^{(1)} \\ \overline{R}_{zi}^{(1)} \\ \overline{R}_{i}^{(1)} \end{cases} = \int_{S} \begin{pmatrix} -x_{k} N_{i} \\ 0 \\ x_{k} N_{i} \end{pmatrix} r dr dz$$

(5),

IBM PC

 $r = r_i$, (i = 1, 2, 3) { = 0 . $r = r_1 = R$, $r = r_2 = 2R$,

.

 $r = r_3 = 2,5R$.

,

 $r \geq 2,5R$,

,

366

† _r , , r > 2R , , r < 2,5R, () , а r • , † ,

- 1. - . . . 1957. .114. 1. . 49-52.
- //
- 2.
- 3. . .

•

:

. .- . ., а : ,0019, . .: (+37410)22-00-48

24

.

•

1.

[1,2].

[3]. - ([4].

,

) -

:

[5,6].

[7].

[8].

,

,

,

,

-

$$\Omega = \{(x, y): 0 \le x \le l, |y| \le h, h \lt\lt l\},\$$

$$\begin{aligned}
\uparrow_{xy} &= \vee^{4} \uparrow_{xy}^{-}(x), \, \nu = \vee^{3} \nu^{-}(x) \qquad y = -h \\
u &= \vee^{3} u^{+}(x), \, \uparrow_{y} = \vee^{3} \uparrow_{y}^{+}(x) \qquad y = h \\
x &= 0, l
\end{aligned} \tag{1.1}$$

.

[9,10].

,
$$\begin{array}{c} \langle x/l, \\ \langle x/l, \\ \langle x/l, \\ \rangle \\ \langle x/l, \\ \langle x/l, \\ \langle x/l, \\ \langle x/l, \\ \rangle \\ \langle x/l, \\ \langle x/l, \\ \langle x/l, \\ \langle x/l, \\ \rangle \\ \langle x/l, \\ \rangle \\ \langle x/l, \\ \langle x/l, \\ \rangle \\ \langle x/$$

[1-8]

$$Q = \bigvee^{q} \sum_{s=0}^{S} \bigvee^{s} Q^{(s)}$$

$$Q -$$
(1.2)

q

,

$$Q^{(s)}$$
:
 $q=3$ $\dagger_x, \dagger_y, U, V, q=4$ \dagger_{xy} (1.3)

,

, [6]. O , (1.2) -

$$U_{\varsigma}^{(s)} = \frac{1}{2} \sum_{i=0}^{s} \left(\frac{\partial U^{(s-i)}}{\partial \varsigma} \cdot \frac{\partial U^{(i)}}{\partial \varsigma} + \frac{\partial V^{(s-i)}}{\partial \varsigma} \cdot \frac{\partial V^{(i)}}{\partial \varsigma} \right) \quad (\varsigma, \gamma)$$
$$U_{\varsigma'}^{(s)} = \sum_{i=0}^{s} \left(\frac{\partial U^{(s-i)}}{\partial \varsigma} \cdot \frac{\partial U^{(i)}}{\partial \varsigma} + \frac{\partial V^{(s-i)}}{\partial \varsigma} \cdot \frac{\partial V^{(i)}}{\partial \varsigma} \right)$$
$$(1.4)$$
[6].

†

$$\begin{aligned}
\uparrow_{1}^{*(s)}, \uparrow_{2}^{*(s)} & U_{\varsigma}^{(s)}, U_{\varsigma'}^{(s)}, U_{\varsigma'}^{(s)}. \\
& (1.4) & ', \\
U^{(s)} &= u_{0}^{(s)} + u^{*(s)}, \quad V^{(s)} &= v_{0}^{(s)} + v^{*(s)} \\
\uparrow_{y}^{(s)} &= \uparrow_{y0}^{(s)} + \uparrow_{y}^{*(s)}, \quad \uparrow_{x}^{(s)} &= \frac{1}{a_{11}} \frac{du_{0}^{(s)}}{d\varsigma} - \frac{a_{12}}{a_{11}} \uparrow_{y0}^{(s)} + \uparrow_{x}^{*(s)} \\
\uparrow_{xy}^{(s)} &= \uparrow_{xy0}^{(s)} + \left(\frac{a_{12}}{a_{11}} \frac{d\uparrow_{y0}^{(s)}}{d\varsigma} - \frac{1}{a_{11}} \frac{d^{2}u_{0}^{(2)}}{d\varsigma^{2}}\right)' + \uparrow_{xy}^{*(s)} \\
\end{cases} (1.6)$$

,

-

:

$$\begin{aligned} \dagger {}_{y0}^{(s)} &= \dagger {}_{y}^{+(s)} - \dagger {}_{y}^{*(s)}(<,1) \\ \dagger {}_{xy0}^{(s)} &= \frac{a_{12}}{a_{11}} \frac{d \dagger {}_{y}^{+(s)}}{d <} - \frac{1}{a_{11}} \frac{d^{2} u^{+(s)}}{d <^{2}} + \dagger {}_{xy}^{-(s)} - \frac{a_{12}}{a_{11}} \frac{d \dagger {}_{y}^{*(s)}(<,1)}{d <} + \\ &+ \frac{1}{a_{11}} \frac{d^{2} u^{*(s)}(<,1)}{d <^{2}} - \dagger {}_{xy}^{*(s)}(<,-1) \\ u_{0}^{(s)} &= u^{+(s)} - u^{*(s)}(<,1), \ v_{0}^{(s)} &= v^{+(s)} - v^{*(s)}(<,-1) \end{aligned}$$
(1.8)

$$\begin{array}{l} \uparrow_{y}^{+(0)} = \uparrow_{y}^{+}, \ u^{+(0)} = u^{+}, \ \uparrow_{xy}^{-(0)} = \uparrow_{xy}^{-}, \ v^{-(0)} = v^{-} \\ \uparrow_{y}^{+(s)} = \uparrow_{xy}^{-(s)} = 0, \ u^{+(s)} = v^{-(s)} = 0, \ s > 0 \\ \vdots \end{array}$$

$$(1.8) \quad (1.6),$$

$$\begin{aligned} & \dagger_{x}^{(s)} = \frac{1}{a_{11}} \frac{du^{+(s)}}{d\varsigma} - \frac{a_{12}}{a_{11}} \dagger_{y}^{+(s)} - \frac{1}{a_{11}} \frac{du^{*(s)}(\varsigma, 1)}{d\varsigma} + \frac{a_{12}}{a_{11}} \dagger_{y}^{*(s)}(\varsigma, 1) + \dagger_{x}^{*(s)} \\ & \dagger_{xy}^{(s)} = \frac{a_{12}}{a_{11}} \frac{d\dagger_{y}^{+(s)}}{d\varsigma} (1+\varsigma) - \frac{1}{a_{11}} \frac{d^{2}u^{+(s)}}{d\varsigma^{2}} (1+\varsigma) + \dagger_{xy}^{-(s)} - \dagger_{xy}^{*(s)}(\varsigma, -1) - \\ & - \frac{a_{12}}{a_{11}} \frac{d\dagger_{y}^{*(s)}(\varsigma, 1)}{d\varsigma} (1+\varsigma) + \frac{1}{a_{11}} \frac{d^{2}u^{*(s)}(\varsigma, 1)}{d\varsigma^{2}} (1+\varsigma) + \dagger_{xy}^{*(s)}(\varsigma, \varsigma) \\ & + \frac{1}{y} = \dagger_{y}^{+(s)} + \dagger_{y}^{*(s)}(\varsigma, \varsigma) - \dagger_{y}^{*(s)}(\varsigma, 1) \\ & U^{(s)} = u^{+(s)} + u^{*(s)}(\varsigma, \varsigma) - u^{*(s)}(\varsigma, 1) \\ & V^{(s)} = v^{-(s)} + v^{*(s)}(\varsigma, \varsigma) - v^{*(s)}(\varsigma, -1) \\ & (1.9) \end{aligned}$$

•

,

,

.

x = 0, l.

x=0,l,

3.	,				
	,		:	- "	"
	, 2005. 468 .				
4.	//		. 1976.	.29.	619-32.
5.	,//		. 1991	92.	2 76-81.
6.	// .	N1(14)	. 2007 36-	-42.	
7.	,			-	
	. 2001.		. 16-18.		
8.	,	//			
	"	"		: 20	005.350.
9.				–	.: 1948.
10.	,				
	.: 1988.				

: , . , . 5 .: (097)23-83-10

:

• •

,

,

[2].

,

:

$$f_{0} = , f_{1} = , S$$

-

,

,

.1

[3]

$$v(t) = B^{\dagger} \stackrel{m}{=} sx \int_{0}^{t} f^{k}(t) e^{-X(t-t)} dt$$
(2)

$$v(t) = B^{\dagger} m + s_0 x_0^{\dagger} t^{\dagger} k(t) e^{-x(t-t)} dt +$$

$$+ s_1 x_0^{\dagger} t^{\dagger} k(t + s_2) e^{-x(t-t)} dt$$

$$s_0 + s_1 = s, s_{1} -$$

$$t(t)$$

$$t + s_1 x_0^{\dagger} t^{\dagger} t^{\dagger} k(t + s_2) e^{-x(t-t)} dt$$

$$s_0 + s_1 = s + s_1 t^{\dagger} t^{\dagger}$$

 $\dagger , _{"2} = t - _{"1}, S_1 \dagger ^{"n}$ $t>t_1\,,\qquad ,$ (2),

[3]:

$$v(t) = B^{\dagger} {}^{m} \left(\right) - \cos \tilde{S} \left(t - t_{1} \right) \right)^{m} + S^{\dagger} {}^{k}_{0} \left(e^{-x \left(t - \frac{1}{t} \right)} - e^{-xt} \right) + S^{\dagger} {}^{k}_{1} \left(\right) - 1 \right)^{k} \left(e^{-x \left(t - t_{1} \right)} - e^{-x \left(t - t_{0} \right)} \right) + S^{\dagger} {}^{k}_{1} \left(\right) - \cos \tilde{S} \left(t - t_{1} \right) \right)^{k} x e^{-x \left(t - \frac{1}{t} \right)} dt$$

$$(4)$$

$$t_{1}$$
(3)
$$t > t_{1},$$
(3)
$$t > t_{1},$$
(3)
$$(t) = B \frac{m}{1} \left(-\cos\left(t - t_{1}\right)\right)^{m} + \frac{k}{0} \left(e^{-\left(t - t_{0}\right)} - e^{-\left(t\right)}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-\left(t - t_{1}\right)} - e^{-\left(t - t_{0}\right)}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-\left(t - t_{1}\right)} - e^{-\left(t - t_{0}\right)}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-\left(t - t_{1}\right)} - e^{-\left(t - t_{0}\right)}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-\left(t - t_{1}\right)} - e^{-\left(t - t_{0}\right)}\right) + \frac{k}{1} \left(-1\right)^{k} \left(1 - e^{-t_{0}}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-\left(t - t_{1}\right)} - e^{-\left(t - t_{0}\right)}\right) + \frac{k}{1} \left(1 - e^{-t_{0}}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-t_{0}} - t_{0}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-t_{0}} - t_{0}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-t_{0}} - t_{0}\right) + \frac{k}{1} \left(-1\right)^{k} \left(1 - e^{-t_{0}}\right) + \frac{k}{1} \left(-1\right)^{k} \left(e^{-t_{0}} - t_{0}\right) + \frac{k}{1} \left(-1\right)^{k} \left(-1\right)^{k} \left(e^{-t_{0}} - t_{0}\right) + \frac{k}{1} \left(-1\right)^{k} \left(-1$$

(6)

$$\Delta w(n) = \int_{t_{1}+T_{n}}^{t_{1}+t(n+1)} \uparrow(t) \frac{\partial v(t)}{\partial t} dt \qquad (6)$$

$$T = 2f / \tilde{S} \qquad (7)$$

$$n = \int_{t_{1}}^{t} I = 2f / \tilde{S} \qquad (7)$$

$$(6), \qquad (7) \qquad (6), \qquad (7) \qquad (7) \qquad (7)$$

$$\Delta w(n) = Sx \uparrow_{1}^{t+1} \int_{t_{1}+T_{n}}^{t_{1}+t(n+1)} (1 - \cos S(t - t_{1})) \int_{t_{1}+T_{n}}^{t} S \uparrow_{t_{1}}^{t} (1) - \cos S(t - t_{1})) \int_{t_{1}}^{k+1} dt - \int_{t_{1}+T_{n}}^{t_{1}+t(n+1)} (1 - e^{-xT}) \int_{t_{1}}^{t} S \uparrow_{t_{1}}^{t} X^{2} \int_{t_{1}}^{t} (1) - \cos S(t - t_{1}) \int_{t_{1}}^{k} e^{-x(t-1)} dt \int_{t_{1}}^{k} dt + \qquad (8)$$

$$+ S \uparrow_{1} e^{-x(t_{1}+n)} (1 - e^{-xT}) \int_{t_{1}}^{t} \delta (1 - e^{-xt_{0}}) + \uparrow_{t_{1}}^{t} (1) - 1)^{k} (e^{xt_{0}} - e^{xt_{1}}) \int_{t_{1}}^{k} x^{2} \int_{t_{1}}^{t} (1) - \cos S(t - t_{1}) \int_{t_{1}}^{k+1} dt - \int_{t_{1}+T_{n}}^{t_{1}+t_{1}} \int_{t_{1}+T_{n}}^{t(n+1)} (1 - \cos S(t - t_{1})) \int_{t_{1}}^{k+1} dt - \int_{t_{1}+T_{n}}^{t_{1}+t_{1}} \int_{t_{1}+T_{n}}^{t(n+1)} (1 - \cos S(t - t_{1})) \int_{t_{1}}^{k} S \circ_{t_{1}}^{t} (1) - \cos S(t - t_{1}) \int_{t_{1}}^{k+1} dt - \int_{t_{1}+T_{n}}^{t_{1}+t_{1}} \int_{t_{1}+T_{n}}^{t(n+1)} (1 - \cos S(t - t_{1})) \int_{t_{1}}^{k} S \circ_{t_{1}}^{t} X^{2} \int_{t_{1}}^{t} (1 - \cos S(t - t_{1}))^{k} e^{-x(t-1)} dt \int_{t_{1}}^{k} dt + (9)$$

$$+ S \circ_{t_{1}}^{t} e^{-x(t_{1}+n)} (1 - e^{-xT}) \int_{t_{0}}^{k} (1 - e^{-xt_{0}}) + \uparrow_{t_{1}}^{k} (1 - 1)^{k} (e^{xt_{0}} - e^{xt_{1}}) \int_{t_{0}}^{k} dt + (9)$$

$$+ S \circ_{t_{1}}^{t} e^{-x(t_{1}+n)} (1 - e^{-xT}) \int_{t_{0}}^{k} (1 - e^{-xt_{0}}) + \uparrow_{t_{1}}^{k} (1 - 1)^{k} (e^{xt_{0}} - e^{xt_{1}}) \int_{t_{0}}^{k} dt + (9)$$

$$\times \left(\left\{ -\frac{x^{2}}{x^{2} + S^{2}} \right\} \right) \qquad (E(n) \qquad (3)$$

$$\mathbb{E}\left(n\right) = \frac{\Delta W(n)}{W(n)} \tag{10}$$

$$W(n) - , \qquad :$$

1.

376

2.	• •,	. // .	•		"	
			". 2	5-28	2007.	
	326	-330.				
3.						-
			2008	1 10 15	• •	()
4	• • •	• •	. 2008.	110-13.		1000
4. 24				•	•	, 1999.
5 2.	. 50					
5.	• •,	·	•		//	_
			. 2007. 9.	. 9-18.	• //	_
		•				

•••,

,

 $h = GB / \left[4\pi (1 - \nu) \sigma_f \right]$ $G - ; B - ; \xi -$ $; \dagger_f - .$ (2)

"

[2,3].

_

,

,

(.1).

,

. 1.

,

,

 Δh S () 2*a*, † (,). [5,6]: $\dagger = -\frac{2P_a}{f \cdot \Delta h} \cdot \frac{\cos(x - S)\cos^3 S}{\cos x}; \\ \ddagger = -\frac{2P_a}{f \cdot \Delta h} \cdot \frac{\cos(x - S)\cos^3 S \cdot \sin^2 S}{\cos x};$ (3) ; X – P_a – ; S – $\begin{array}{c} \Delta h \\ \dagger & \ddagger \end{array}$: Δh S_o , ; † ‡; Δh $\cos X \quad \cos S$, (3), tgX tgS (3) :

$$\dagger = -\frac{2P_a}{f \cdot \Delta h} \cdot \frac{1 + \operatorname{tgS} \cdot \operatorname{tgX}}{(1 + \operatorname{tg}^2 S)^2}; \ \ \sharp = -\frac{2P_a}{f \cdot \Delta h} \cdot \frac{1 + \operatorname{tgS} \cdot \operatorname{tgX}}{(1 + \operatorname{tg}^2 S)^2} \cdot \operatorname{tgS}$$
(4)

$$\operatorname{tgS} = x/y$$
, a

$$\frac{f \cdot \Delta h \cdot \dagger}{2P_a} = -\frac{1 + \operatorname{tgS} \cdot \operatorname{tgX}}{(1 + \operatorname{tg}^2 S)^2}; \frac{f \cdot \Delta h \cdot \ddagger}{2P_a} = -\frac{1 + \operatorname{tgS} \cdot \operatorname{tgX}}{(1 + \operatorname{tg}^2 S)^2} \cdot \operatorname{tgS}$$
(5)

 $\dagger / P_a = \ddagger / P_a$

$$t_1 = -\frac{1 + \text{tgS} \cdot \text{tgX}}{(1 + \text{tg}^2 \text{S})^2}; t_2 = -\frac{1 + \text{tgS} \cdot \text{tgX}}{(1 + \text{tg}^2 \text{S})^2} \cdot \text{tgS}$$
(6)

:

tgX , $0,2; 0,3 \quad 0,4 \quad tgs = -10...+10$ $t_1 \quad t_2$. ,

‡

,

•

,

,

-

,

‡

t

.

tgs = 0, ...

$$tgs = |0.5|,$$

 $S = 26^0$.

,

‡ ,

•

 P_a .

 $mn = a_0 / 3, \qquad a_0 -$

,

$$\Delta h = a_o / 6 \text{tg}\beta_o \tag{8}$$

$$\Delta h$$

$$L_0, \tag{1}$$

,

(1)

,

 Δh

:

L (

$$I_{w} = \frac{K_{o} \cdot a_{o} \cdot A_{a}}{6LF_{f} \text{tgS}_{o}} = \frac{H \cdot a_{o} \cdot A_{a}}{6\text{tgS}_{o} \cdot \Delta h - L \cdot F_{f}}$$
(9)
$$K_{0}$$

$$K_0 = H / \Delta h$$

$$(10)$$

$$H - \qquad \qquad : \Delta h -$$

.

- 4. Suh N.P. The Delamination Theory of Wear // Wear. 1973. Vol. 25. 111-124.
- Rosenfield A.R. A Fracture Mechanics Approach to Wear // Wear. 1980. Vol. 61. 125-132.
- Hills D.A., Ashelby D.W. The Initiation of Wear Cracks // Wear. 1981. Vol. 70, N 3. 365-371.
- 7. Keer L.M., Bryant M.D., Haritos G.K. Subsurface Cracking and Delamination // Transactions of the ASME. AMD. 1980. Vol. 39. 79-95.

., . . .

: , . 105 .: (+37410)58-98-84 E-mail: pogosian@seua.am

:

, . . .,

····, , :.

12

.: 5-67-04 E-mail: <u>n_meliksetyan@mail.ru</u>

$$\alpha = 0$$

$$\Phi'(x) = -\frac{2(1-x)^{\alpha-1}(1+x)^{\beta-1}}{n+\alpha+\beta+1} \times \sum_{j=1}^{n} \frac{\Phi(\xi_j)}{P_{n-1}^{(\alpha+1,\beta+1)}(\xi_j)} \left[\frac{2(n+1)P_{n+1}^{(\alpha-1,\beta-1)}(x)}{(x-\xi_j)} + (1-x^2)\frac{P_n^{(\alpha,\beta)}(x)}{(x-\xi_j)^2} \right]$$
(3)

:

$$\varphi(x)$$

$$\varphi_n(x) = \sum_{j=1}^n \frac{\varphi(\xi_j) P_n^{(\alpha,\beta)}(x)}{(x - \xi_j) P_n^{\prime(\alpha,\beta)}(\xi_j)}$$

$$\Phi(x)$$

$$\alpha \neq 0 \quad \beta \neq 0$$

,

,

$$\varphi(x)$$
 –

$$\Phi(x) = \varphi(x)(1-x)^{\alpha}(1+x)^{\beta} \qquad (\operatorname{Re}(\alpha), \operatorname{Re}(\beta) \ge 0) \qquad (2)$$

$$J(z) = \int_{-1}^{1} \frac{\Phi'(x)}{x - z} dx \qquad (z \in C, \ z \neq \pm 1)$$
(1)

-

,

,

[-1,1].

•

,

:

$$\Phi'(x) = \frac{2(1+x)^{\beta-1}}{n+\beta+1} \times \sum_{j=1}^{n} \frac{\Phi(\xi_j)}{P_{n-1}^{(1,\beta+1)}(\xi_j)} \left[\frac{(n+\beta)P_n^{(1,\beta-1)}(x)}{(x-\xi_j)} - (1+x)\frac{P_n^{(0,\beta)}(x)}{(x-\xi_j)^2} \right]$$
(4)

 $\beta = 0$

,

$$\Phi'(x) = -\frac{2(1-x)^{\alpha-1}}{n+\alpha+1} \times \sum_{j=1}^{n} \frac{\Phi(\xi_j)}{P_{n-1}^{(\alpha+1,1)}(\xi_j)} \left[\frac{(n+\alpha)P_n^{(\alpha-1,1)}(x)}{(x-\xi_j)} + (1-x)\frac{P_n^{(\alpha,0)}(x)}{(x-\xi_j)^2} \right]$$
(5)
(3)-(5)

$$A_{n}^{(\alpha,\beta)} \left[B_{n}^{(\alpha,\beta)} P_{n-1}^{(\alpha,\beta)}(x) - (\alpha - \beta) P_{n}^{(\alpha,\beta)}(x) - C_{n}^{(\alpha,\beta)} P_{n+1}^{(\alpha,\beta)}(x) \right] =$$

$$= -2(n+1) P_{n+1}^{(\alpha-1,\beta-1)}(x)$$
(6)

$$A_n^{(\alpha,\beta)} = \frac{2(n+1)(n+\alpha+\beta)}{(2n+\alpha+\beta)(2n+\alpha+\beta+2)}$$
$$B_n^{(\alpha,\beta)} = \frac{(n+\alpha)(n+\beta)(2n+\alpha+\beta+2)}{(n+\alpha+\beta)(2n+\alpha+\beta+1)}$$
$$C_n^{(\alpha,\beta)} = \frac{(n+\alpha+\beta+1)(2n+\alpha+\beta)}{(2n+\alpha+\beta+1)}$$

(3)-(5) (1)

-

$$\alpha = 0$$

$$J(z) = \frac{2}{n+\beta+1} \sum_{j=1}^{n} \frac{\varphi(\xi_{j})}{P_{n-1}^{(1,\beta+1)}(\xi_{j})} \left\{ \frac{-2^{\beta}}{(1-\xi_{j})(z-1)} - (n+\beta) \frac{Q_{n}^{(1,\beta-1)}(z)}{(z-\xi_{j})(z-1)} - \frac{Q_{n}^{(0,\beta)}(z) - Q_{n}^{(0,\beta)}(\xi_{j})}{(z-\xi_{j})^{2}} \right\}$$
(8)

 $\beta = 0$

$$J(z) = \frac{2}{n+\alpha+1} \sum_{j=1}^{n} \frac{\varphi(\xi_{j})}{P_{n-1}^{(\alpha+1,1)}(\xi_{j})} \left\{ \frac{-2^{\alpha}}{(1+\xi_{j})(z+1)} - (n+\alpha) \frac{Q_{n}^{(\alpha-1,1)}(z)}{(z-\xi_{j})(z+1)} - \frac{Q_{n}^{(\alpha,0)}(z) - Q_{n}^{(\alpha,0)}(\xi_{j})}{(z-\xi_{j})^{2}} \right\}$$
(9)
$$Q_{n}^{(\alpha,\beta)}(z) - , \qquad ,$$

 $\alpha \neq 0 \qquad \beta \neq 0$

$$\begin{split} \lim_{z \to \xi_m} \left[\frac{2(n+1)}{z - \xi_m} Q_{n+1}^{(\alpha-1,\beta-1)}(z) + \frac{Q_n^{(\alpha,\beta)}(z) - Q_n^{(\alpha,\beta)}(\xi_m)}{(z - \xi_m)^2} \right] &= -\frac{1}{2} \frac{d^2 Q_n^{(\alpha,\beta)}(z)}{dz^2} \bigg|_{z = \xi_m} \\ \alpha &= 0 \\ \lim_{z \to \xi_m} \left[\frac{(n+\beta) Q_n^{(1,\beta-1)}(z)}{(z - \xi_m)(z - 1)} + \frac{Q_n^{(0,\beta)}(z) - Q_n^{(0,\beta)}(\xi_m)}{(z - \xi_m)^2} \right] &= -\frac{1}{2} \frac{d^2 Q_n^{(0,\beta)}(z)}{dz^2} \bigg|_{z = \xi_m} \\ \beta &= 0 \\ \lim_{z \to \xi_m} \left[\frac{(n+\alpha) Q_n^{(\alpha-1,1)}(z)}{(z - \xi_m)(z + 1)} + \frac{Q_n^{(\alpha,0)}(z) - Q_n^{(\alpha,0)}(\xi_m)}{(z - \xi_m)^2} \right] &= -\frac{1}{2} \frac{d^2 Q_n^{(\alpha,0)}(z)}{dz^2} \bigg|_{z = \xi_m} \end{split}$$

$$(7)-(9)$$

$$J_0(z) = \int_{-1}^{1} \frac{\Phi(x)}{(x-z)^2} dx .$$
⁽¹¹⁾

[5],

$$J_0(z)$$
 [2]

$$J_0(z) = \lim_{\varepsilon \to 0} \left[\int_{-1}^{z-\varepsilon} \frac{\Phi(x)}{(x-z)^2} dx + \int_{z+\varepsilon}^{1} \frac{\Phi(x)}{(x-z)^2} dx - \frac{2\Phi(z)}{\varepsilon} \right]$$
(12)

$$J_{0}(z) = -\frac{\Phi(1)}{1-z} - \frac{\Phi(-1)}{1+z} + \int_{-1}^{1} \frac{\Phi'(x)}{x-z} dx , \qquad (13)$$
$$J_{0}(z)$$

, (2),
$$\alpha = \beta = 0$$

 $\varphi(\pm 1) \neq 0$, $J(z)$ $J_0(z)$
(7)-(9).

•

1.	••		,	.2.	.:
	, 1966. 296				

2.	1079
3.	, 1978.
4	. – .: « », 1995.
4.	
	, .// . , .31
	2007. 26.
5.	JF. Lu and A.Hanyga Scattering of SH Wave by a crack terminating at the
	interface of a bimaterial. Computational Mechanics, Springer-Verlag, 34
	(2004), 74-85.
6.	,,
	.2293-302.
	·
	. .

E-mail: avsah@mechins.sci.am

[1].

,

. .

,

,

w(x,y),

$$D\left(\frac{\partial^4 w(x, y)}{\partial x^4} + \frac{\partial^4 w(x, y)}{\partial x^2 \partial y^2} + \frac{\partial^4 w(x, y)}{\partial y^4}\right) = q(x, y)$$
(1)
$$D - , q(x, y) - ,$$
(1)

S + C

(1) S C.

,

,

4-

:

S ,

$$w(0, y) = w(x, 0) = 0$$
⁽²⁾

$$\partial w(x, y) / \partial x \Big|_{x=0} = \partial w(x, y) / \partial y \Big|_{y=0} = 0$$
(3)

:

$$M_{x} = D\left(\frac{\partial^{2} w}{\partial x^{2}} + \underbrace{\left. \frac{\partial^{2} w}{\partial y^{2}} \right|_{x=a}} = 0, M_{y} = D\left(\frac{\partial^{2} w}{\partial y^{2}} + \underbrace{\left. \frac{\partial^{2} w}{\partial x^{2}} \right|_{y=b}} = 0 \quad (4)$$

$$\tilde{Q}_{x} = D\left(\frac{\partial^{3}w}{\partial x^{3}} + (2 - \varepsilon)\frac{\partial^{3}w}{\partial x \partial y^{2}}\right)\Big|_{x=a} = 0, \tilde{Q}_{y} = D\left(\frac{\partial^{3}w}{\partial y^{3}} + (2 - \varepsilon)\frac{\partial^{3}w}{\partial y \partial x^{2}}\right)\Big|_{y=b} = 0 (5)$$

$$\varepsilon - ...,$$

$$M_{xy} = D(1 - \varepsilon) \frac{\partial^3 w}{\partial x^2 \partial y^2} \bigg|_{x=a, y=b} = 0$$
(6)

:

,

(1)

$$w(x, y) = \frac{qa^4}{D} \left(\widetilde{w}(x, y) + \sum_{n=1}^{\infty} f_n(x) \cos(\beta_n y) + \sum_{n=1}^{\infty} \{ f_n(y) \cos(t_n x) \} \right)$$
(7)

(1)

$$\widetilde{w}(x,y) = \frac{x^2 y^2}{8a^4} + F \frac{xy}{a^2}$$
(8)

$$f_{n}(x) = A_{n}^{1} \frac{(x-a)\operatorname{sh}(x)_{n} - \operatorname{xsh}((x-a))_{n}}{a^{4}} + A_{n}^{2} \frac{\operatorname{xsh}(x)_{n}}{a^{4}} + A_{n}^{3} \operatorname{ch}(a)_{n} + A_{n}^{3} + A_{n}^{3} \operatorname{ch}(\frac{(x-a)}{a}) - \operatorname{ch}(x)_{n}}{a^{4}} + A_{n}^{3} \operatorname{ch}(a)_{n} + A_{n}^{3} + A_{n}^{3} \operatorname{ch}(\frac{(x-a)}{a}) + \operatorname{ch}(x)_{n}}{a^{4}} + A_{n}^{3} \operatorname{ch}(a)_{n} + A_{n}^{5} \frac{\operatorname{ysh}(yt_{n}) - \operatorname{ysh}((y-b)t_{n})}{a^{4}} + A_{n}^{5} \operatorname{ch}(a)_{n} + A_{n}^{6} \operatorname{ch}(\frac{y(x-b)}{a}) + A_{n}^{6}} + A_{n}^{6} + A_{$$

$$DX = C , \qquad (11)$$

$$D - , \qquad (12)$$

$$D = \begin{vmatrix} D_{11} \dots D_{16} \\ \dots & \dots \\ D_{61} \dots D_{61} \end{vmatrix}$$

$$X - , \qquad (12)$$

 $sh(x)_n(sh(yt_n))$,

-

,

(12)

 $x \operatorname{sh}(x)_{n}(y \operatorname{sh}(t_{n})) \qquad x \operatorname{ch}(x)_{n}(y \operatorname{ch}(y t_{n})),$

9×9

(9,10)

•

•

,

(e, f, g),

(0,1) (1,0). N				
. 1 0,25	X Y,	2 - x = 0		0.25
$\underline{w}, \underline{M}_x, \underline{Q}_x$		[6].		0,23.
[6]	5×5	.,,,	,	-

					1
(,)	(0.0)	(0.25,0.25)	(0.50,0.50)	(0.75,0.75)	(1.00,1.00)
W	0	0.00099	0.00826	0.02249	0.03983
W	0	0.00118	0.00847	0.02235	0.03906

,

					2
$\sim \sim$	(0.0)	(0,0.25)	(0,0.25)	(0,0.25)	(0,0.25)
M _x	0	-0.04287	-0.12610	-0.20778	-0.21624
<u>M</u> _x	0	-0.04703	0.12811	-0.02079	-0.28399
Q _x	-0.0804	0.1377	0.4830	0.7249	6.5104
Q _x	-	0.2074	0.4892	0.7191	0.9918

, [7,8,9].

,

1. .: • · ·, • , 1963. 2. . ., 2007. 3. . 2004. . 47. 3. C. 4-63. • • .// . .

4.	,			-	.// .	
		3 11-17				
5.	Hutchinson J.R. On the Bending of	Rectangula	r Pl	ates W	ith Two Oppo	osite
	Edges Simply Supported. ASME J. Ap	pl. Mech. 1	992	v.59.	pp. 679.	
6.		L		••	11	
	· · · · · · · · · · · · · · · · · · ·		•		. 1959	
7.					, _, _,	_
	.// .:"		,			"
	: 2002 67-88.					,
8.				.:	. 1987.	
9.		. //			. 1992.	3.
	26-47		-	-		
	•					
	•					
•	,					
	, .					

.: 541319 E-mail: <u>yusanoyan@mechins.sci.am</u>

,

.

(

r,

r = 1

$$\Delta \Delta \Phi(r, \{) = 0 \tag{1}$$

:
$$u_{\{}(r,0) = \ddagger_{r\{}(r,0) = 0, \ u_{\{}(r,r) = \ddagger_{r\{}(r,r) = 0$$
 (2)

 $t_{r}(1, \{ \}) = f_{1}(\{ \}), \quad t_{r\{}(1, \{ \}) = f_{2}(\{ \})$ $f_{1}(\{ \}) = f_{2}(\{ \}) -$ (3)

$$\begin{aligned}
\uparrow_{r} &= \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \xi^{2}}, \, \uparrow_{\xi} = \frac{\partial^{2} \Phi}{\partial r^{2}}, \, \downarrow_{r\xi} = -\frac{1}{r} \frac{\partial^{2} \Phi}{\partial r \partial \xi} + \frac{1}{r^{2}} \frac{\partial \Phi}{\partial \xi} & (4)
\end{aligned}$$
(1)
$$\Phi &= r^{3+1} \Big[A \sin(3 + 1) + B \cos(3 + 1) + C \sin(3 - 1) + D \cos(3 - 1) \Big] \\
A, B, C, D &= , , 3 - , , (4) \\
&(2), A, B, C, D [8]. \\
&A = C = 0
\end{aligned}$$

$$\sin(3 + 1) \ r \cdot \sin(3 - 1) \ r = 0 \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(5) \\
(6) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\
(7) \\$$

III.
$$f < r < 2f$$
, $(k = -1, 0, 1, ...)$, $(n = 2, 3, 4, ...)$
[5], $f_1(\{), f_2(\{)\}$,

$$r_{0}\tilde{f}_{11} = (2-r_{0})\tilde{f}_{21}$$
(8)

$$\tilde{f}_{1m} = \int_{0}^{r} f_{1}(\{)\cos a_{0}m\{d\{, \tilde{f}_{2m} = \int_{0}^{r} f_{2}(\{)\sin a_{0}m\{d\{ II. , , 0\} \\ II. , 0 \\ H_{kn}(r, \{) = D_{k}r^{\lambda_{k}+1}\cos(\lambda_{k}-1)\{ + B_{k}r^{\lambda_{n}^{*}+1}\cos(\lambda_{n}^{*}+1)\{ (k=0,1,2,...), (n=1,2,3,...) \\ (1) \\ (1) \\ (1) \\ (2), \\ (4)$$
(9)
(4)
$$\begin{cases} \uparrow_{r} \\ \uparrow_{\ell} \\ \uparrow_{\ell} \\ \end{cases} = D_{0} \begin{cases} 2 \\ 0 \\ 2 \end{cases} +$$

$$+ \sum_{k=1}^{\infty} \begin{bmatrix} D_{k} \}_{k} \begin{cases} (3-\}_{k}) \\ (\}_{k}-1) \\ (\}_{k}+1) \end{cases} r^{a_{0}k} + B_{k} \}_{k}^{*} (\}_{k}^{*}+1) \begin{cases} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} r^{a_{0}k-2} \\ \begin{bmatrix} \cos r_{0}k \{ \\ \sin r_{0}k \{ \\ \cos r_{0}k \{ \} \\ ext{ (3), } D_{k} & B_{k} \end{cases}$$

$$(3), \quad D_{k} \quad B_{k}$$

$$(3), \quad D_{k} \quad B_{k}$$

$$(2D_{0} + \sum_{k=1}^{\infty} \begin{bmatrix} D_{k} \}_{k} (3-\}_{k}) - B_{k} \}_{k}^{*} (\}_{k}^{*}+1) \\ \end{bmatrix} \cos r_{0}k \{ = f_{1}(\{ \})$$

$$\sum_{k=1}^{\infty} \begin{bmatrix} D_{k} \}_{k} (\}_{k}+1) + B_{k} \}_{k}^{*} (\}_{k}^{*}+1) \\ \end{bmatrix} \sin r_{0}k \{ = f_{2}(\{ \})$$

$$(11)$$

$$(13) \quad \cos r_{0}m \{ (m=0,1,2,...), -1 \\ \sin r_{0}m \{ (m=1,2,3,...) \} = \{ 0, r, \} \end{cases}$$

$$D_{0} = \frac{1}{2r} \int_{0}^{r} f_{1}(\{) d\{, D_{m}\}_{m} r = \tilde{f}_{1m} + \tilde{f}_{2m},$$

$$B_{m} \}_{m}^{*}(\}_{m}^{*} + 1) r = (\tilde{f}_{1m} + \tilde{f}_{2m})(3-\}_{m}) - 2\tilde{f}_{1m}$$
(12)

$$\begin{cases} \uparrow_{r} \\ \uparrow_{r} \\ \uparrow_{q} \\ \end{pmatrix} = D_{0} \begin{cases} 2 \\ 0 \\ 2 \end{cases} + \frac{1}{r} \sum_{k=1}^{\infty} \left[\left(\tilde{f}_{1k} + \tilde{f}_{2k} \right) \begin{cases} (2 - r_{0}k) \\ r_{0}k \\ (2 + r_{0}k) \end{cases} r^{r_{0}k} + \left[\left(\tilde{f}_{1k} + \tilde{f}_{2k} \right) (2 - r_{0}k) - 2\tilde{f}_{1k} \right] \begin{cases} -1 \\ 1 \\ 1 \end{cases} r^{r_{0}k-2} \\ \left[\frac{\cos r_{0}k}{\cos r_{0}k} \right] \end{cases}$$
(13)

(13),
(13),
$$r = 1$$
,
 $k = 1$

$$f/2 < r \le f$$

$$(r_0 - 2)$$

$$(14)$$

$$-1 \le \Gamma_0 - 2 < 0$$
 (15)

$$\begin{cases} = r - ... \\ 2. (8). , k = 1 \\ (\tilde{f}_{11} + \tilde{f}_{21})(2 - r_0) - 2\tilde{f}_{11} = -r_0 \tilde{f}_{11} + (2 - r_0) \tilde{f}_{21} = 0 \\ (13) ... , \\ r < f , ... \\ r < f , ... \\ r = 1 \\ , ... \\ (8), (9), (13) ... \\ r < f , ... \\ (8)), (13) ... \\ (8)), (13) ... \\ (8)), (13) ... \\ (13) ..$$

3.
$$r = f$$
. ((8)).

$$\begin{pmatrix} \tilde{f}_{11} + \tilde{f}_{21} \end{pmatrix} (2 - \Gamma_0) - 2\tilde{f}_{11} = \tilde{f}_{21} - \tilde{f}_{11}$$
(8)
,
$$\uparrow_{\{} r \qquad (0,1) \qquad \{ = \Gamma \quad \{ = 0, \}$$

 $P_{\rm r} = P_0,$

$$P_{r} = \frac{1}{\sin r} \left[\int_{0}^{r} f_{1}(\{ \}) \cos\{d\{ -\int_{0}^{r} f_{2}(\{ \}) \sin\{d\{ \} \right]$$
(16)

$$P_0 = P_a \cos a + \int_0^r f_1(\{) \sin \{ d\{ + \int_0^r f_2(\{) \cos \{ d\{ (17) \} \} \} + \int_0^r f_2(\{ (17) \} +$$

r = 1

).

,

, (16)

 $P_{r} = P_{0} = P_{1} \cos\{(\sin r/2)^{-1}\}$

,

1. Williams M.L.Stress Singularities Resulting from various boundary conditions in angular corners of plats in extention.//Journal of applied mechanics. 1952. Vol 19.N4. P. 526-528. 2. . . . 1969. . 33. N1. . 132–135. // 3. . 1963. 567 . . : 4. .: . . . 1981.688 . 5. . 1961. . 32. 2. . 69–77. .// 6. • . 1976. . 12. . 85-94. _ 7. : , 1987. 338 . 8. . . . // (95-. . , 2007. . 368-372.). 9. . .// . 1999. .52. 2. .3–11. .

:

• •,

24

:0019 .:(+37410) 52-48-90 E-mail:mechins@sci.am

1.
$$D = \{(x, y, z): 0 \le x \le a, 0 \le y \le b, |z| \le h, h << l, l = \min(a, b)\},$$

: $F(x, y, t) = P(x, y) \exp(i\Omega t), \quad \Omega -$

,

,

•

.

•

,

• •

[1].

[2,3] $\uparrow_{rs}(x, y, z, t) = \uparrow_{jk}(x, y, z) \exp(i\Omega t),$ $(u, v, w) = (u_x, u_y, u_z) \exp(i\Omega t), \quad r, s = x, y, z; \quad j, k = 1, 2, 3$ (1.2)

$$\langle = \frac{x}{l}, y = \frac{y}{l}, ' = \frac{z}{l}, \quad U = \frac{u_x}{l}, V = \frac{u_y}{l}, W = \frac{u_z}{l}$$
(1.3)
$$\partial t_{11} = \partial t_{12} = y e^{-1} \partial t_{13} = y e^{-2} \Omega^2 U = 0 \quad (1, 2, 2; U, V, W)$$

$$\frac{\partial \zeta}{\partial \zeta} + \frac{\partial y}{\partial y} + \sqrt{\frac{\partial \zeta}{\partial t}} + \sqrt{22_*U} = 0 \quad (1, 2, 3, U, V, W)$$
$$\frac{\partial U}{\partial \zeta} = a_{11} \dagger_{11} + a_{12} \dagger_{22} + a_{13} \dagger_{33} \qquad (\zeta, y; U, V; 1, 2)$$

$$\mathbf{v}^{-1} \frac{\partial W}{\partial t} = a_{13} \mathbf{t}_{11} + a_{23} \mathbf{t}_{22} + a_{33} \mathbf{t}_{33}$$

$$\frac{\partial U}{\partial \mathbf{y}} + \frac{\partial V}{\partial \boldsymbol{\varsigma}} = a_{66} \mathbf{t}_{12}, \quad \frac{\partial W}{\partial \boldsymbol{\varsigma}} + \mathbf{v}^{-1} \frac{\partial U}{\partial t} = a_{55} \mathbf{t}_{13}$$

$$\frac{\partial W}{\partial \mathbf{y}} + \mathbf{v}^{-1} \frac{\partial V}{\partial t} = a_{44} \mathbf{t}_{23}, \qquad \Omega_*^2 = \dots h^2 \Omega^2, \quad \mathbf{v} = h/l$$

$$(1.4)$$

$$(I_b):$$

$$I = I^{\text{int}} + I_b$$
(1.5)

$$\uparrow_{ij}^{int} = \mathsf{V}^{-1+s} \uparrow_{ij}^{int(s)}, \ U^{int} = \mathsf{V}^{s} U^{int(s)}, \ (U,V,W), \ s = \overline{0,S}; \ i, j = 1, 2, 3 (1.6)$$
(1.6) (1.4),
;

$$\begin{split} & \uparrow_{12}^{(s)} = \frac{1}{a_{66}} \left(\frac{\partial V^{(s-1)}}{\partial \varsigma} + \frac{\partial U^{(s-1)}}{\partial y} \right), \ \uparrow_{13}^{(s)} = \frac{1}{a_{55}} \left(\frac{\partial U^{(s)}}{\partial \varsigma} + \frac{\partial W^{(s-1)}}{\partial \varsigma} \right) \\ & \uparrow_{11}^{(s)} = -A_{23} \frac{\partial W^{(s)}}{\partial \varsigma} + A_{22} \frac{\partial U^{(s-1)}}{\partial \varsigma} - A_{12} \frac{\partial V^{(s-1)}}{\partial y} \\ & \uparrow_{22}^{(s)} = -A_{13} \frac{\partial W^{(s)}}{\partial \varsigma} - A_{12} \frac{\partial U^{(s-1)}}{\partial \varsigma} + A_{33} \frac{\partial V^{(s-1)}}{\partial y} \\ & \uparrow_{23}^{(s)} = \frac{1}{a_{44}} \left(\frac{\partial V^{(s)}}{\partial \varsigma} + \frac{\partial W^{(s-1)}}{\partial y} \right) \\ & \uparrow_{33}^{(s)} = A_{11} \frac{\partial W^{(s)}}{\partial \varsigma} - A_{23} \frac{\partial U^{(s-1)}}{\partial \varsigma} - A_{13} \frac{\partial V^{(s-1)}}{\partial y} \end{split}$$
(1.7)

$$A_{11} = \frac{a_{11}a_{22} - a_{12}^2}{\Delta}, A_{22} = \frac{a_{22}a_{33} - a_{23}^2}{\Delta}, A_{33} = \frac{a_{11}a_{33} - a_{13}^2}{\Delta}$$

$$A_{12} = \frac{a_{12}a_{33} - a_{13}a_{23}}{\Delta}, A_{13} = \frac{a_{11}a_{23} - a_{12}a_{13}}{\Delta}, A_{23} = \frac{a_{22}a_{13} - a_{12}a_{23}}{\Delta}$$

$$\Delta = a_{11}a_{22}a_{33} + 2a_{12}a_{13}a_{23} - a_{11}a_{23}^2 - a_{22}a_{13}^2 - a_{33}a_{12}^2$$

$$U^{(s)}, V^{(s)}, W^{(s)} :$$

$$a^{2}U^{(s)} = a_{11}a_{22}a_{33} + a_{22}a_{33} + a_{33}a_{33} - a_{33}a_{12}^2$$

$$\frac{\partial^2 U^{(s)}}{\partial'^2} + a_{55} \Omega_*^2 U^{(s)} = R_U^{(s)} \quad (U, V, W; \ a_{55}, a_{44}, a_{66})$$
(1.8)

$$R_{U}^{(s)} = -\frac{\partial^{2} W^{(s-1)}}{\partial \langle \partial'} - a_{55} \left(\frac{\partial \uparrow_{11}^{(s-1)}}{\partial \langle} + \frac{\partial \uparrow_{12}^{(s-1)}}{\partial y} \right)$$

$$R_{V}^{(s)} = -\frac{\partial^{2} W^{(s-1)}}{\partial y \partial'} - a_{44} \left(\frac{\partial \uparrow_{12}^{(s-1)}}{\partial \langle} + \frac{\partial \uparrow_{22}^{(s-1)}}{\partial y} \right)$$

$$R_{W}^{(s)} = A_{23} \frac{\partial^{2} U^{(s-1)}}{\partial \langle \partial'} + A_{13} \frac{\partial^{2} V^{(s-1)}}{\partial y \partial'} - a_{44} \left(\frac{\partial \uparrow_{13}^{(s-1)}}{\partial \langle} + \frac{\partial \uparrow_{23}^{(s-1)}}{\partial y} \right)$$

$$\vdots$$

$$U^{(s)} (\langle , y, ' \rangle) = U_{0}^{(s)} (\langle , y, ' \rangle) + U_{t}^{(s)} (\langle , y, ' \rangle) \quad (U, V, W)$$

$$= 0 - (1.8). \qquad (1.9)$$

$$U_{0}^{(s)}(\langle,\mathbf{y},') = C_{U1}^{(s)}(\langle,\mathbf{y}\rangle)\sin\sqrt{a_{55}}\Omega_{*}' + C_{U2}^{(s)}(\langle,\mathbf{y}\rangle)\cos\sqrt{a_{55}}\Omega_{*}'$$

$$V_{0}^{(s)}(\langle,\mathbf{y},') = C_{V1}^{(s)}(\langle,\mathbf{y}\rangle)\sin\sqrt{a_{44}}\Omega_{*}' + C_{V2}^{(s)}(\langle,\mathbf{y}\rangle)\cos\sqrt{a_{44}}\Omega_{*}' \qquad (1.10)$$

$$W_{0}^{(s)}(\langle,\mathbf{y},') = C_{W1}^{(s)}(\langle,\mathbf{y}\rangle)\sin\frac{\Omega_{*}}{\sqrt{A_{11}}}' + C_{W2}^{(s)}(\langle,\mathbf{y}\rangle)\cos\frac{\Omega_{*}}{\sqrt{A_{11}}}' \qquad (1.7) \qquad , , , (1.1),$$

$$C^{(s)} = \frac{(1.9)}{\Omega_{s55} + \frac{(s)}{13t} ('=1)} \cos \sqrt{a_{55}} \Omega_{*} (1+') + \frac{Q_{U}^{(s)}}{\Omega_{*} \sin 2\sqrt{a_{55}} \Omega_{*}} \cos \sqrt{a_{55}} \Omega_{*} (1+') + \frac{Q_{U}^{(s)}}{\sin 2\sqrt{a_{55}} \Omega_{*}} \cos \sqrt{a_{55}} \Omega_{*} (1-') + U_{\pm}^{(s)}, \qquad (U,V; a_{55}, a_{44}; 1,2)$$

$$W^{(s)} = \frac{1}{\cos \frac{2\Omega_{*}}{\sqrt{A_{11}}}} \left[\frac{p^{(s)}(\langle , y \rangle) - \frac{1}{33} ('=1)}{\Omega_{*} \sqrt{A_{11}}} \sin \frac{\Omega_{*}}{\sqrt{A_{11}}} (1+') - \frac{1.11}{-W_{\pm}^{(s)} ('=-1) \cos \frac{\Omega_{*}}{\sqrt{A_{11}}} (1-')} \right] + W_{\pm}^{(s)}$$

$$Q_{U}^{(s)} = \frac{\sqrt{a_{55}}}{\Omega_{*}} \left[f_{1} \left(\frac{p^{(s)}(\langle, \mathbf{y}) - \uparrow_{33}^{(s)}(\prime = 1)}{\cos \frac{2\Omega_{*}}{\sqrt{A_{11}}}} - W_{1}^{(s)}(\prime = -1)\Omega_{*}\sqrt{A_{11}} \operatorname{tg} \frac{2\Omega_{*}}{\sqrt{A_{11}}} + \right] \right]$$

$$\begin{aligned} &+ \uparrow_{33}^{(s)} (' = -1) - \uparrow_{13t}^{(s)} (' = -1) \end{bmatrix}, \qquad (a_{55}, a_{44}; f_1, f_2; \uparrow_{13t}, \uparrow_{23t}) \\ &+ \uparrow_{13t}^{(s)} = \frac{1}{a_{55}} \left(\frac{\partial U_1^{(s)}}{\partial'} + \frac{\partial W^{(s-1)}}{\partial \langle} \right), \qquad (1, 2; U, V; a_{55}, a_{44}) \\ &+ \uparrow_{33t}^{(s)} = \frac{\partial W_1^{(s)}}{\partial'} - A_{23} \frac{\partial U^{(s-1)}}{\partial \langle} - A_{13} \frac{\partial V^{(s-1)}}{\partial y} \\ &p^{(0)}(\langle, y) = - \vee p(\langle, y), p(\langle, y) = P(l\langle, ly); \quad p^{(s)}(\langle, y) = 0, s \neq 0 \\ &(1.11) \qquad , \\ &\sin 2\sqrt{a_{55}}\Omega_* \neq 0, \quad \sin 2\sqrt{a_{44}}\Omega_* \neq 0, \quad \cos \frac{2\Omega_*}{\sqrt{A_{11}}} \neq 0 \\ &, \Omega \end{aligned}$$
(1.12)

• , ,

•

:

$$P(x, y) = \text{const} = p \tag{2.1}$$

,

, . ,

s = 1:

-

$$U^{(1)} = V^{(1)} = W^{(1)} = \dagger_{ij}^{(1)} = 0, \quad i, j = 1, 2, 3$$

$$: u = -phf_1 \frac{\sqrt{a_{55}}}{\Omega_*} \frac{\cos\sqrt{a_{55}}\Omega_*(1-i)}{\cos\frac{2\Omega_*}{\sqrt{A_{11}}}\sin 2\sqrt{a_{55}}\Omega_*} \exp(i\Omega t)$$

$$(u, v; f_1, f_2; a_{55}, a_{44})$$

$$w = -ph \frac{\sin\frac{\Omega_*}{\sqrt{A_{11}}}(1+i)}{\Omega_*\sqrt{A_{11}}\cos\frac{2\Omega_*}{\sqrt{A_{11}}}} \exp(i\Omega t)$$

$$(2.2)$$

$$\begin{aligned}
\uparrow_{xx} &= p \frac{A_{23}}{A_{11}} \frac{\cos \frac{\Omega_{*}}{\sqrt{A_{11}}} (1+')}{\cos \frac{2\Omega_{*}}{\sqrt{A_{11}}}} \exp(i\Omega t), \uparrow_{xy} = 0, \ (x, y; \ A_{23}, A_{13}) \\
\uparrow_{zz} &= -p \frac{\cos \frac{\Omega_{*}}{\sqrt{A_{11}}} (1+')}{\cos \frac{2\Omega_{*}}{\sqrt{A_{11}}}} \exp(i\Omega t) \\
\uparrow_{xz} &= -p f_{1} \frac{\sin \sqrt{a_{55}} \Omega_{*} (1-')}{\cos \frac{2\Omega_{*}}{\sqrt{A_{11}}}} \exp(i\Omega t), \ (x, y; \ f_{1}, f_{2}; \ a_{55}, a_{44}) \\
&= P(x, y) = ax + by + c
\end{aligned}$$
(2.4)

$$s = 2$$
:

,

,

,

.

•

$$U^{(2)} = V^{(2)} = W^{(2)} = \dagger_{ij}^{(2)} = 0, \quad i, j = 1, 2, 3$$

)

1.	. :	 , 1997. 4	14 .		
2.				. // .	
3.	-		· ·	. 2000. 3 8-11.	
		·	. 200238.	. // 73-24.	

.

: (0224) 22335(.), (093) 069950(.)

:

[2], [3] [11] §1. [2] , $j = \dots \mathbf{v}$, $j = j(\dots)$, х t. - $\frac{\partial_{\cdots}}{\partial t} + j'(\cdots)\frac{\partial_{\cdots}}{\partial x} = 0$ (1.1) $\dots = \dots_0(x),$ t(1.1), (1.1)...(x,t), $\frac{dx}{dt} = j'(...), ... = c, x = x_0 + j'(c)t$ (1.2) $..._{0}(x)$, [2] , $...' = ... = ..._1$, $\dots = const$, \dots_1 , t = 0x = 0... $\dots' = F(t)$ (1.3)...(x,t)*x*,*t*. $j'(...) = a_0 + X...', X = j''(..._1), j'(..._1) = a_0$ (1.4) a_0

• •

•,

$$\tau = t - \frac{x}{a_0} \tag{1.5}$$

$$\frac{\partial_{\cdots}'}{\partial x} - \frac{\mathbf{X}}{a_0^2} \cdots' \frac{\partial_{\cdots}'}{\partial \ddagger} = 0 \tag{1.6}$$

[3]

$$t - \frac{x}{a_0} + \frac{\chi x}{a_0^2} F(y_1) = y_1$$

$$= const$$
(1.7)

,

$$y_1 = const$$

$$V = a_0 + \frac{x}{2} ...'$$
 (1.8)
 V , = ...₁.

(1.7) (1.8),
$$V = \frac{dx}{dt}$$
, (1.7) t , $x = x(t)$
(1.8), [3]

$$F^{2}(y_{1}) = \frac{2a_{0}^{2}}{\chi_{x}} \int_{0}^{y_{1}} F(y_{1}') dy_{1}'$$
(1.9)
$$F(y_{1}) = F(y_{1})$$
(1.3)

$$x = 0, , , x = 0, , F(t) = ..._2 - ..._1 + A\sqrt{t}$$
(1.10)
... $t = 0$..._1, $A < 0,$

(1.9) , ,

$$\begin{pmatrix} \dots_{2} - \dots_{1} + A\sqrt{y_{1}} \end{pmatrix}^{2} = \frac{2a_{0}^{2}}{\chi_{x}} \left\{ (\dots_{2} - \dots_{1})y_{1} + \frac{2}{3}Ay_{1}^{\frac{3}{2}} \right\}$$

$$, \qquad \dots_{1,2}, A, \chi, a_{0}^{2},$$

$$\dots_{1,2}^{\frac{1}{2}} \qquad y_{1} \qquad \chi,$$

$$\dots' = F(y_{1}) \qquad (1.10), \qquad (1.7) \qquad .$$

$$(1.11)$$

$$\frac{\partial^2 ...'}{\partial t^2}$$
^(1.6)
^(1.6)

•

§2.

 $= x \qquad s \qquad = y \qquad \begin{array}{c} p(s,x/t,y) \\ t, \qquad p \end{array}$

•

,

-

[8]

$$-\frac{\partial p}{\partial s} = a\frac{\partial p}{\partial x} + \frac{1}{2}b\frac{\partial^2 p}{\partial x^2}$$
(2.1)

$$\frac{\partial p}{\partial t} = -\frac{\partial ap}{\partial y} + \frac{1}{2} \frac{\partial^2 bp}{\partial y^2}$$
(2.2)

$$(2.1) u = s + \Delta t, z s, x$$

$$a(s,x) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{|z-x| < v} (z-x) p(s,x,s+\Delta t,z) dz$$
(2.3)

$$b(s,x) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{|z-x| < v} (z-x)^2 p(s,x,s+\Delta t,z) dz$$

$$(2.4)$$

a

[9]

(2.2)
$$s + \Delta t, x \qquad t + \Delta t, y$$
.
- . . , $s = t_0$,

.

 $x = x_0, y = x$, $t = t_0$ $p_0(t_0, x_0)$,

$$p(t,x) = \int_{-\infty}^{\infty} P_0(t_0, x_0) p(t_0, x_0, t, x) dx_0$$
(2.5)

t

, a = const, $a = a_0$,

,

-

b = const

,

,

,

x

$$\frac{\partial P}{\partial t} + a_0 \frac{\partial P}{\partial x} + \frac{1}{2} b \frac{\partial^2 P}{\partial x^2} = 0$$
(2.6)

, ,

$$a = a_0 + XP'$$
 (2.7)
 a_0 (2.3), $P' = P - P_0$, P_0

$$p_{0}(t_{0}, x_{0}, t, x) = \frac{1}{\sqrt{2fb(t - t_{0})}} e^{-\frac{(x - x_{0} - a_{0}t + a_{0}t_{0})^{2}}{2b(t - t_{0})}}$$

$$a_{0}(t - t_{0}),$$

$$x - x_{0}, \qquad 0 \qquad (2.6),$$

$$P_{0}(t_{0}, x) = \text{const} \qquad (2,5), (2.8) \qquad ,$$

$$P_{0}(t, x) = \text{const} . - , \qquad -$$

(2.6),

•

 a_0 ,

 $P' = P - P_0$ *a* (2.7)

$$\frac{\partial P'}{\partial t} + a_0 \frac{\partial P'}{\partial x} + \mathbf{x} P' \frac{\partial P'}{\partial x} + \frac{1}{2} b \frac{\partial^2 P'}{\partial x^2} = 0$$
(2.9)
$$, \qquad \$1, \qquad \ddagger, \qquad (2.9)$$

 a_0

‡, (2.9)

$$P'(t,x) = p'(t,x)$$
 (2.10)

$$\frac{\partial P'}{\partial x} - \frac{x}{a_0^2} P' \frac{\partial P'}{\partial t} - \frac{1}{2} \frac{b}{a_0^3} \frac{\partial^2 P'}{\partial t^2} = 0$$
(2.11)

.4

(2.2) , [1] x = x(t)[9],

,

$$\overline{x} = -\int_{-\infty}^{+\infty} x v(t, x; t_0, x_0) dx$$
(3.2)

(2.1),

a ,

v= ...

,

$$x^{2} = \int_{-\infty} x^{2} v(t, x; t_{0}, x_{0}) dx$$
(3.3)

$$x(t_0) = x_0$$
. (2.2), $y = x$,
(2.5) $P(t,x)$, [9]

$$\frac{\overline{dx}}{dt} = \overline{a(x,t)}, \quad \frac{dx^2}{dt} = 2\overline{a(x,t)} + \overline{b(x,t)}$$

$$a(x,t) = a_0 + cx, \quad a_0, c = \text{const}$$
(3.4)

$$x = \overline{x} + \Delta x, \quad \overline{a(x,t)} = a_0 + cx, \quad \overline{b(x,t)} = \frac{(\Delta x)^2}{2\Delta t} - 2c\overline{(\Delta x)^2}$$

$$, \qquad x(t),$$

$$a,b \quad (2.2).$$
(3.5)

х, [1] .1.1, .1.2, .1.2 $\ln x$, , $t_0 = 12$; $t_0 = 20$ $\frac{dx(t)}{dt},$. . , $\frac{dx(t)}{dt},$ x(t) $\frac{dx}{dt} = a_0,$. 4 $a_0 = 14$ $x(t) = a_0 t \,,$ [3], c=0 (2.2) $p(t_0, x_0, t, x)$ p(t,x), $...(t, x) = ..._0, p_0 = \text{const}$

$$\frac{\partial p'}{\partial x} - \frac{x}{a_0^2} p' \frac{\partial p'}{\partial t} + \frac{1}{2} \frac{b}{a_0^3} \frac{\partial^2 p'}{\partial t^2} = 0$$
(3.6)
$$\dots P' \cdot 1$$
(1.6),

(1.8),
$$Xp' = \frac{3A^2X^2t}{4a_0} ,$$
 a [3],

$$a = a_0 + \frac{3A^2 x^2 t}{2a_0} \qquad (2.5), \qquad b, \qquad -$$

$$\frac{\Delta x}{\Delta t} - a_0 \approx \frac{3A^2 x^2 t}{2a_0}, \qquad \frac{\Delta x}{\Delta t} \qquad x(t) \qquad -$$

$$\approx 43 - \dots \qquad Ax = 4.5 - \frac{3}{\frac{3}{2}}.$$

$$x = 0$$
, $P' = A\sqrt{t}$ $A = \frac{1}{6} \frac{1}{\frac{1}{2}}$,

$$x = 27$$
 — .

[13]

[14]

•

1. ., : 1998. 539 .

,

2. Lighthill M.J., Whitham G.B On kinematic waves on long crowded roads Pro. Roy So . A.1955, v. 229, p. N1178.

3.	• •,	•••			1068	21	3				
	.19-24.	• //		· ·	1900.	.21.	5.				
4.	,		1007 1	20							
5.			, 1997. 1	38 . .// .:"							
	". 1968. 70	2.									
6.	-			:		, 196	64.				
7.	,	• •		:	, 1	967.					
8.			:	, 1979. 183 .		10	76				
9.	 494			•		, 19	/0.				
10.	····										
	.: , 1968. 403										
11. Black Fisher, Scholes Myron. The pricing of options and corporative liabilities.											
12	//The journal of politi	cal Economy,	, 1973.u 81.	3.		. 10	101				
12.					•	. 19	01.				
13. Antonelli F.,Barucci and Manchino M.E.Asset pricing with a forward backward											
stochastic differential utility" Econom. Let. 72(2001), pp. 151-157.											
14. Escobedo M., Vazquez Y.L. and Zuazua E. Entropy solution for diffusion-											
convection equation with partial diffusivity //Trans. Amer. Math.Soc. 343											
	(1994), pp. 829-842.										
	:										
	••										
	,										
e	.: 093432331										
E-1	mail: <u>safaryan@rambl</u>	er.ru									
	••										

, E-mail: <u>karapetyandiana@rambler.ru</u>

INSTABILITY AND PERIODIC MOTION OF A PHYSICAL PENDULUM WITH VIBRATING SUSPENSION POINT (THEORY AND EXPERIMENT) Alexander P. Seyranian (Moscow, Russia), Hiroshi Yabuno and Koji Tsumoto (Tsukuba, Japan)

Abstract. In the present paper nonlinear behavior of a physical pendulum with vibrating suspension point is studied both theoretically and experimentally. It is emphasized that previous experiments were mostly of qualitative nature. Instability conditions for lower vertical position of the pendulum are found. Periodic motions for various parameters, corresponding to swinging of the pendulum, are obtained and their stability depending on parameters is investigated. The frequency-response curve for periodic motion with small amplitude is obtained. A good agreement between theoretical and experimental results is reported.

1. Introduction. In nonlinear dynamics the motion of the pendulum represents a classical paradigm. Vibrations and stability of a pendulum with vibrating support have been studied by many authors, see e.g. [1-12]. In spite of many publications there are relatively few recorded experiments on stability analysis and nonlinear behavior of the pendulum. Among well known experimental studies we recall stabilization of an inverted pendulum by high frequency excitation of the support by Kapitza [1,2] and on stability of an inverted rod with a sliding washer under vibrating suspension point by Chelomei [3]. Experiments on stabilization of a pendulum about tilted axis with vibrating suspension point were described in [4,5]. Routes to chaotic motion of the parametrically excited pendulum from the lower vertical position were investigated experimentally in [6]. We note that those experiments were mostly of qualitative nature.

2. Basic relations. Plane oscillations of a physical pendulum about lower vertical position with periodically varying displacement of the suspension point and viscous damping, see Fig 1, are governed by the equation

$$I_{''} + c_{''} + mr(g - \ddot{z})\sin_{''} = 0 \tag{1}$$

Here *I* and *m* are moment of inertia and mass of the pendulum, " is the angle measured from the lower vertical position, *c* is the viscous friction coefficient, *r* is the distance between suspension point and the center of gravity of the pendulum, *g* is the acceleration due to gravity, *z* is the vertical displacement of the suspension point, and the dot stands for differentiation with respect to time *t*.

It is assumed that the displacement of the suspension point of the pendulum is governed by the law

$$z = a \mathbb{W}(\Omega t) \tag{2}$$

where a and Ω are the excitation amplitude and frequency, respectively, and $W(\ddagger)$ is an arbitrary smooth periodic function with the period 2f. The amplitude

a and friction coefficient c are assumed to be small.

Fig 1. Physical pendulum.

For the sake of convenience we introduce the function $\{ = -W \}$. Then we get

$$\ddot{z} = -a\Omega^2 \{ (\Omega t) \tag{3}$$

It is assumed that the mean value of 2f -periodic function { (‡) is zero $\int_{0}^{2f} \{ (\ddagger) d\ddagger = 0 .$

We introduce non-dimensional variables and parameters

$$\ddagger = \Omega t , \forall = \frac{a\Omega_0^2}{g}, \ \check{S} = \frac{\Omega_0}{\Omega}, \ S = \frac{c}{I\Omega_0}; \ \Omega_0 = \sqrt{\frac{mrg}{I}}$$
(4)

Note that Ω_0 is the eigenfrequency of the pendulum about immovable suspension point.

With this notation equation (1) takes the form

 $\ddot{y} + S\check{S}_{y} + [\check{S}^{2} + V\{(\ddagger)]\sin_{y} = 0$ (5)

Dots mean differentiation with respect to \ddagger . The coefficients of equation (5) depend explicitly on the periodic function { (\ddagger) and three independent parameters V, S, Š with V and S being small.

3. Instability regions. According to Lyapunov's theorems the stability or instability of the trivial solution (t) = 0 of nonlinear equation (5) with periodic coefficients is governed by the stability or instability of the linearized equation

This is Hill's equation with damping. It is known that instability (parametric resonance) occurs near the values $\check{S} = k/2$, k = 1, 2, ... According to [11] the

instability regions for equation (6) in three-parameter space are given by half of the cone

$$\frac{s^{2}k^{2}}{4} + \left(2\breve{S} - k\right)^{2} < \frac{\left(a_{k}^{2} + b_{k}^{2}\right) \vee^{2}}{k^{2}}, \ s \ge 0$$
(7)

where

Fig 2. Instability region of the vertical position of the pendulum $_{\#} = 0$.

$$a_{k} = \frac{1}{f} \int_{0}^{2f} \{ (\ddagger) \cos k \ddagger d \ddagger, \quad b_{k} = \frac{1}{f} \int_{0}^{2f} \{ (\ddagger) \sin k \ddagger d \ddagger, \quad k = 1, 2...$$
(8)

are Fourier coefficients of the function $\{(\ddagger)\}$.

Formulae (7) describe first order approximations of instability regions showing that the -th resonance region depends only on the -th Fourier coefficients of the periodic function { (‡) .

The cross section of the half-cone (7) by the plane $S = const \ge 0$ gives the zones of parametric resonance limited by hyperbolae, see Fig 2. The asymptotes of these hyperbolae are found from (7) putting there S = 0. When damping is included (S > 0) the minimal excitation amplitude of the resonance according to (8) is equal to

$$V_{\min} = \frac{S k^2}{2\sqrt{a_k^2 + b_k^2}}$$
(9)

With an increase of the resonance number k Fourier coefficients a_k , b_k tend to zero. This means that for a fixed damping coefficient S with increasing k the minimal excitation amplitude tends to infinity. This explains why it is easier to observe the parametric resonance at small numbers k = 1, 2, ... because at higher

resonance numbers essential efforts and high excitation amplitudes are needed to set the system into unstable motion.

For the function { (\ddagger) = cos \ddagger we have $a_1 = 1$, $b_1 = 0$. Thus, first resonance region for this periodic function is given by the inequality

$$s^{2}/4 + (2\breve{S} - 1)^{2} < v^{2}, \ s \ge 0$$
 (10)

In dimensional quantities we obtain from (4) that swinging of the pendulum occurs near excitation frequencies Ω close to the critical values

$$\Omega_k = \frac{2\Omega_0}{k} , \ k = 1, 2....$$
(11)

Note that Ω_0 is the eigenfrequency of the pendulum. In dimensional quantities inequality (7) yields the instability regions as

$$\frac{c^2}{4I^2\Omega_0^2} + \left(\frac{\Omega}{\Omega_k} - 1\right)^2 < \frac{(a_k^2 + b_k^2) m^2 r^2 a^2}{k^4 I^2}, \ S \ge 0 \ , \ k = 1, 2, \dots$$
(12)

When problem parameters satisfy inequalities (12) the lower vertical position of equilibrium of the pendulum $_{n}(t) = 0$ becomes unstable and the pendulum starts swinging. Then both regular and chaotic motions are possible.

Solid line in Fig 2 shows the boundary of the first resonance region ($\check{S} \approx 1/2$) for the function { (\ddagger) = cos \ddagger and damping coefficients S = 2.61 \cdot 10⁻³, given by formula (10), and experimental points are shown by circles.

4. Periodic solutions. Assuming in (5) the angle " small and substituting $\sin n$ by the first two terms of a Taylor expansion, $\sin n = n - \frac{3}{6}$, and neglecting the higher order terms we get the equation with small nonlinearity

Here it is assumed that V and s are small quantities of order o(1) [12].

We can estimate the amplitude of oscillations at which equation (13) is valid. The absolute value of the non-linear term $\tilde{S}_{\mu}^2 {}^3/6$ in equation (13) must be much less than the absolute value of the linear term \tilde{S}_{μ}^2 . Thus we have the condition ${}_{\mu}{}^2/6 \sim O(V)$. For example, if we take $V \approx 0.1$ then ${}_{\mu}{}| < f/4$. This is the estimate of validity of equation (13). Equation (13) with { (‡) = cos‡ sometimes is called a nonlinear Mathieu-Hill equation [8,12].

Let us study parametric excitation of nonlinear system (13) by periodic function $\{(\ddagger) = \cos \ddagger$ near first resonance frequency $\check{S} \approx 1/2$, $(\Omega \approx 2\Omega_0)$. Using the method of averaging [7,8], we seek approximate solution of the system in the form $_{\mu}(\ddagger) = \Theta \cos(\ddagger/2 + \square)$, where the amplitude Θ and phase \square are slow variables. As a result, for these variables we get the system of differential equations

$$\frac{d\Theta}{d\ddagger} = -\frac{\Theta S\tilde{S}}{2} + \frac{\Theta V}{2}\sin 2E$$

$$\frac{dE}{d\ddagger} = \tilde{S} - \frac{1}{2} - \frac{\Theta^2 \tilde{S}^2}{8} + \frac{V}{2}\cos 2E$$
(14)

For steady motion we have

$$\frac{d\Theta}{d\ddagger} = 0, \quad \frac{dE}{d\ddagger} = 0 \tag{15}$$

From equations (14), (15) besides the trivial solution $\Theta = 0$ we find a nontrivial amplitude

$$\Theta^{2} = \frac{4}{\tilde{S}^{2}} \left(2\tilde{S} - 1 \mp \sqrt{v^{2} - S^{2}\tilde{S}^{2}} \right)$$
(16)

and phase

$$\mathbb{E} = \frac{1}{2} \operatorname{Arc} \tan \left(\mp \frac{\mathsf{s}\check{\mathsf{S}}}{\sqrt{\mathsf{v}^2 - \mathsf{s}^2\check{\mathsf{S}}^2}} \right) + f \ j, \ j = 0, 1, 2, \dots$$
(17)

We insert the denominator of (16) inside the parentheses and express the amplitude as a function of $1/\tilde{S} = \Omega/\Omega_0$

$$\Theta^{2} = 4 \left(\frac{2\Omega}{\Omega_{0}} - \frac{\Omega^{2}}{\Omega_{0}^{2}} \mp \sqrt{\frac{\nu^{2}\Omega^{4}}{\Omega_{0}^{4}} - \frac{s^{2}\Omega^{2}}{\Omega_{0}^{2}}} \right)$$
(18)

The frequency-response curve under fixed damping parameter $S = 2.61 \cdot 10^{-3}$ and amplitude $V = 1.098 \cdot 10^{-2}$ (a = 1mm) is presented in Fig 3. The signs minus and plus in formula (18) correspond to lower (dashed line) and upper (solid line) branches of the curve, respectively, and experimental points are given by circles.

Fig 3. Frequency-response curve at $V = 1.098 \cdot 10^{-2}$, $S = 2.61 \cdot 10^{-3}$.

To find the width of the resonance zone , see Fig 3, it is necessary to equate the right hand side of expression (18) to zero. Then we find that the width *AC* in the first approximation is determined by the inequality (10) in terms of the variable Ω/Ω_0 . This is not surprising since specifies the instability zone of the trivial solution $_{\pi} = 0$.

Lower and higher branches of the frequency-response curve (18) meet at the point B with vertical tangent at the frequency

$$\frac{\Omega}{\Omega_0} = \frac{S}{V}$$
(19)

With increasing damping the frequency-response curve gets narrow and small and when $S/V \rightarrow 2$ the curve disappears tending to the point $\Omega/\Omega_0 = 2$, $\Theta = 0$. We note that the point *B* (with vertical tangent) according to (18) obeys parabolic law.

Thus, according to (10), (19) periodic solutions (16)-(18) exist on the interval of frequencies

$$\frac{\mathsf{s}}{\mathsf{v}} \le \frac{\Omega}{\Omega_0} \le 2 + \sqrt{4\mathsf{v}^2 - \mathsf{s}^2} \tag{20}$$

It should be noted that the method of multiple scales [12] gives another form of frequency-response curve

$$\Theta^{2} = 8 \left(2 - \frac{\Omega}{\Omega_{0}} \mp \sqrt{\frac{\mathsf{v}^{2} \Omega^{4}}{4 \Omega_{0}^{4}} - \mathsf{S}^{2}} \right)$$
(21)

However, near the resonant frequency $\Omega \approx 2\Omega_0$ both formulas (18) and (21) yield close results.

5. Stability of periodic solutions. In this section we study stability of periodic solutions $_{u_0}(\ddagger) = \Theta \cos(\ddagger/2 + \boxdot)$, the amplitude and phase of which are given by relations (16)-(18). We take a small increment to the periodic solution $_{u_0}(\ddagger) = _{u_0}(\ddagger) + u(\ddagger)$ and substitute this function in equation (13) with $\{(\ddagger) = \cos \ddagger$. Then in the first approximation we obtain a linear equation in $u(\ddagger)$

$$\ddot{u} + S \check{S} \dot{u} + \left(\check{S}^{2} + V \cos t - \frac{\check{S}^{2}_{n0}(t)}{2}\right)u = 0$$
(22)

According to Lyapunov's theorem on stability based on linear approximation the stability of periodic solutions is determined by stability or instability of solutions of the linearized equation (7) on increment function $u(\ddagger)$, i.e. equation (22). This is Hill's equation with damping [11], the coefficients of which depend on three independent parameters \check{S} , V, S with $\check{S} \approx 1/2$, V, $S \ll 1$, and the 2f periodic function

$$\Phi(\ddagger) = (1 - \breve{S}^2)\cos\ddagger -\frac{\Theta^2\breve{S}^2}{2\mathsf{V}}\cos^2\left(\frac{\ddagger}{2} + \mathsf{E}\right)$$
(23)

The instability region for equation (22) near the values $\tilde{S} = 1/2$, v = s = 0 is given by [11]

$$S^{2}/4 + (2\check{S} - 1 + a_{0}V)^{2} < V^{2}(a_{1}^{2} + b_{1}^{2})$$
 (24)

where a_0, a_1, b_1 are first Fourier coefficients of the function $\Phi(\ddagger)$. The asymptotic stability region, respectively, is given by the inequality (24) with the opposite sign.

For Fourier coefficients we find

$$a_0 = -\frac{\Theta^2 \tilde{S}^2}{2v}, \ a_1 = 1 - \tilde{S}^2 - \frac{\Theta^2 \tilde{S}^2 \cos 2E}{4v}, \ b_1 = \frac{\Theta^2 \tilde{S}^2 \sin 2E}{4v}$$
 (25)

Since $\tilde{S} \approx 1/2$ first term in inequality (24) can be replaced by $\tilde{S}^2 S^2$. Thus, near the values V = S = 0, $\tilde{S} = 1/2$ the following inequality is valid

$$\tilde{S}^{2}S^{2} + (2\tilde{S} - 1 + a_{0}V)^{2} - V^{2}(a_{1}^{2} + b_{1}^{2}) < 0$$
(26)

Substituting coefficients (25) into (26) and using the expression for $\cos \Delta E$ from (14),(15), and relations (16), we obtain

$$\Theta^{2}\check{S}^{2}\left(\frac{\Theta^{2}\check{S}^{2}}{4} - 2\check{S} + 1\right) = \mp \Theta^{2}\check{S}^{2}\sqrt{v^{2} - s^{2}\check{S}^{2}} < 0$$
(27)

From the last inequality follows that the periodic solution (16)-(18) with plus is stable, and with minus is unstable. These solutions are shown in Fig 3 by solid and dashed lines, respectively. Experimental points in Fig 3, shown by circles, correspond to stable periodic solutions while unstable solutions are not observed in the experiment. It is seen from Fig 3 that the results of the experiment are in a good agreement with theoretical results up to the amplitude of periodic motion

Fig 4. Experimental apparatus.

 $\Theta \approx f / 4$. Note that for higher amplitudes the equation (13) and formulas (16)-(18) are not valid.

Thus, it follows from Fig 3 and previous derivations that under excitation of the suspension point with the frequency $\Omega \approx 2\Omega_0$ the pendulum oscillates according to the harmonic law $_{n_0}(t) = \Theta \cos(\Omega t / 2 + \mathbb{E})$, and the frequency $\Omega/2$ can be higher or lower than the eigenfrequency Ω_0 of the pendulum with immovable suspension point. This conclusion contradicts to "the important result" by Kapitza [1,2] "that vibration of the support always decreases the period of the pendulum". This error is caused by oversimplification of the analysis.

6. Description of experiment. As shown in Fig. 4, the experimental setup consists of a pendulum with the length l = 108 mm whose pivot (radial bearing) is vertically excited by an electromagnetic shaker. The angle of the pendulum is measured with a rotary encoder and the vertical motion of the pivot is measured

with a laser sensor KEYENCE Corp., LB-60 with a resolution of $40 \sim m$. To generate unstable regions and frequency-response curves, we monitored the time traces and frequency components of the excitation and angle of the pendulum by using ONO SOKKI Corp., Multi-Channel Data Station DS-2100. The resolution of the frequency of excitation and response of the pendulum is 0.02 Hz, and the resolution of the angle of the pendulum in the experiment is $1.57 \cdot 10^{-3}$ rad. The eigenfrequency of the pendulum is equal $\Omega_0 = 10.374$ rad/sec, and the range of the excitation amplitude of the pivot lies within the limits a = 0.5 - 5 mm. The damping coefficient was determined by decay of free vibrations of the pendulum with the immovable suspension point and is equal to $S = 2.61 \cdot 10^{-3}$.

For fixed damping coefficient and excitation amplitude the instability range of the vertical position of the pendulum in Fig 2 is equal to the interval AC of the frequency-response curve. Experimental points on the upper part of the frequencyresponse curve in Fig 3, shown by circles, were obtained by excitation of the pivot of the pendulum with the given amplitude and near-critical frequency $\Omega \approx 2\Omega_0$ with the subsequent increase of frequency by small step up to getting the point Awith the zero amplitude. That is how the points of the left boundary of the instability region in Fig 2 for different excitation amplitudes were obtained. Experimental points on the frequency axis in Fig 3 correspond to stability of the vertical position of the pendulum $_{\mu} = 0$. The right boundary of the instability region in Fig 2 was obtained by excitation of the pendulum from the equilibrium position $_{u} = 0$ at different amplitudes and frequencies with the Coulomb friction preventing the parametric resonance. That is why the left and right boundaries of the instability region in Fig 2 obtained experimentally by different methods differ by the accuracy of coincidence with the theoretical curves. Nevertheless, Fig 2 and 3 demonstrate rather good agreement between theoretical and experimental results.

REFERENCES

- 1. Kapitza P.L. Dinamic stability of a pendulum under vibrating support // Journal of experimental and theoretical physics, 1951. V. 21. No. 5. P. 588-597.
- Kapitza P.L. A pendulum with vibrating support // Uspekhi physicheskikh nauk, 1951. V. 24. No. 1. P. 7-20.
- Chelomei V.N. Paradoxes in mechanics caused by vibrations // Doklady AN USSR. 1983. V. 270. No. 1. P. 62-67.
- 4. Strizhak .G. Asymptotic normalization method. Kiev: Visha shkola, 1984. 280p.
- 5. Yabuno H., Miura M., Aoshima N. Bifurcation in an inverted pendulum with tilted high-frequency excitation: analytical and experimental investigations on

the symmetry-breaking of the bifurcation $\prime\prime$ Journal of Sound and Vibration. 2004. V. 273. P.493-513.

- Leven R.W., Pompe B., Wilke C., and Koch B.P. Experiments on periodic and chaotic motions of a parametrically forced pendulum // Physica 16D. 1985. P. 371-384.
- 7. Bogolyubov N.N., Mitropolskii Yu. . Asymptotic methods in the theory of nonlinear vibrations. oscow: Nauka, 1974. 503p.
- Nayfeh A.H., Mook D.T. Nonlinear Oscillations. New York: Wiley, 1979. 506p.
- 9. Arnold V.I. Mathematical Methods of Classical Mechanics. New York: Springer, 1989. 472p.
- 10. Blekhman I.I. Vibrational Mechanics. New Jersey: World Scientific, 2001. 400p.
- 11. Seyranian A.P. Resonance domains for the Hill equation with damping // Doklady Physics, 2001. Vol. 46, No. 1, pp. 41-44.
- 12. Thomsen J.J. Vibrations and Stability. Advanced Theory, Analysis and Tools. Berlin: Springer, 2003. 404p.

Information about autors:

Seyranian Alexander P.

Institute of Mechanics, Moscow State Lomonosov University Moscow, Russia E-mail: <u>seyran@imec.msu.ru</u>

HiroshiYabuno and Koji Tsumoto

Institute of Engineering Mechanics and Systems, University of Tsukuba Tsukuba, Japan E-mail: <u>yabuno@esys.tsukuba.ac.jp</u> ([1-7] .). [1,3,7]. [8],

,

,

,

,

,

[9,10],

,

,

,

,

, <110>. {111} , [11,12],

, [10]. [13] : 1. <110>. {111} 2.

3.

.

,

12

$$\sigma(t) \qquad [001], \\ \varepsilon(t)$$

,

,

,

$$\begin{array}{cccc}
([010] & [100]), & & \epsilon(t) \\
& & \vdots \\
& & v(t) = \frac{8}{\sqrt{6}} \Phi\left[\frac{\dagger(t)}{\sqrt{6}}\right] & & (1) \\
\Phi & - & & \vdots
\end{array}$$

,

$$\sigma(t) \qquad [110],$$

$$v(t) = \frac{4}{\sqrt{6}} \Phi\left[\frac{\dagger(t)}{\sqrt{6}}\right] \qquad (2)$$

[100] [110],

,

,

$$x_{1}, y_{1}, \\ t_{x_{1}y_{1}}, \\ \vdots \\ t_{x_{1}y_{1}} = t_{x} \sin\{\cos\mathbb{E}\sin\langle\cos\mathrm{u}+t_{y}\sin\{\sin\mathbb{E}\sin\langle\sin\mathrm{u}+t_{z}\cos\{\cos\langle+t_{y}, \mathrm{sin}\{\sin(\mathrm{E}\sin\langle\sin\mathrm{u}+\mathrm{u})+t_{y}(\sin\{\sin\mathbb{E}\cos\langle+\mathrm{cos}\{\sin\langle\sin\mathrm{u})\}+t_{y}, \\ t_{x}}(\sin\{\cos\mathbb{E}\cos\langle+\mathrm{cos}\{\sin\langle\cos\mathrm{u}\rangle\})$$
(3)

$$\cos u = -\frac{\cos \{ \cos \mathbb{E} \cos \langle \sin \mathbb{E} \sin \langle \sin \rangle \pm \sin \mathbb{E} \sqrt{1 - \frac{\cos^2 \{ \cos^2 \langle \sin^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \langle \sin^2 \rangle + \cos^2 \rangle + \cos^$$

$$\mathbf{T}_{t} = \mathbf{t}_{x_{1}y_{1}},$$

 $x_1, y_1,$

:

,

,

,

,

,

$$V_{z} = \Pi_{t} (\ddagger_{x,y_{z}}) \cos \{ \cos < , V_{x} = \Pi_{t} (\ddagger_{x,y_{z}}) \sin \{ \cos \mathbb{E} \sin < \cos \mathbb{U} \\ V_{y} = \Pi_{t} (\ddagger_{x,y_{z}}) \sin \{ \sin \mathbb{E} \sin < \sin \mathbb{U} , \\ X_{xy} = \Pi_{t} (\ddagger_{x,y_{z}}) (\cos \mathbb{E} \sin \mathbb{U} + \sin \mathbb{E} \cos \mathbb{U}) \sin \{ \sin < x_{xy} = \Pi_{t} (\ddagger_{x,y_{z}}) (\sin \{ \sin \mathbb{E} \cos < + \cos \{ \sin < \sin \mathbb{U} \}) \\ X_{yz} = \Pi_{t} (\ddagger_{x,y_{z}}) (\sin \{ \cos \mathbb{E} \cos < + \cos \{ \sin < \cos \mathbb{U} \}) \\ (\sin \{ \cos \mathbb{E} \cos < + \cos \{ \sin < \cos \mathbb{U} \})$$

x, *y*

, (4)

 Π_{t}

(4).

(3)

φ, ψ

,

-

,

,

:
$$0 \le \{ \le \frac{f}{2}, 0 < \mathbb{E} < 2f, \frac{f}{2} - \{ \le \le \frac{f}{2} + \{ ., \mathbb{E} \le \le \frac{f}{2} \} \}$$

 $x_{_{1}}, y_{_{1}},$

<

•

•

$$\begin{aligned} t_{x} &= t_{y} = t_{xy} = t_{yz} = t_{zx} = 0: \\ v_{z} &= 2\int_{0}^{\frac{f}{2}} \cos\{d\{\int_{0}^{\frac{2f}{2}} d\mathbb{E}\int_{0}^{\frac{f}{2}} \cos\langle\Pi_{i}(t_{z}\cos\{\cos\langle)d\langle = \\ &= 4f\int_{0}^{\frac{f}{2}} \cos\{d\{\int_{2}^{\frac{f}{2}} \cos\langle\Pi_{i}(t_{z}\cos\{\cos\langle)d\langle \\ &\int_{2}^{\frac{f}{2}} (t_{z}) \\ &, \quad v_{z}(t) \end{aligned} \end{aligned}$$
(6)

$$V_{z}(t) = \int_{0}^{t} K(t, \ddagger) \dagger_{z}(\ddagger) d\ddagger$$
(7)
(7)

$$\Pi_{t}(u) = \frac{4}{f(f^{2}-8)} \int_{0}^{t} K(t,t) u(t) dt$$

$$\Pi_{t}, \qquad (8)$$

-

$$v_{z}(t) = a \int_{0}^{t} K(t, \ddagger) |\ddagger_{z}(\ddagger)|^{m-1} \ddagger_{z}(\ddagger) d\ddagger \qquad (9)$$

$$\Pi_{t}(u) \qquad \ddagger_{z}(t)$$

$$u(t) \qquad a \qquad b,$$

•

$$b = \frac{a}{8f \int_{0}^{\frac{f}{2}} \cos^{m+1} \left\{ \int_{\frac{f}{2}-\xi}^{\frac{f}{2}} \cos^{m+1} < d < d \right\}}$$
(10)

(,[1]).

,

$$_{\alpha}(\beta,t) = t^{\alpha} \sum_{n=0}^{\infty} \frac{(-\beta)^n t^{n(1-\alpha)}}{\Gamma[(1-\alpha)(n+1)]} , \quad 0 < r < 1, \quad s \ge 0$$
(1)

,

α,

,

,

)

.

•

[2]

,

:λ β,

(

,

,

,

,

0,7. , ϵ_0 (t=0),

,

[3,4],

α -

[2],

Excel, Maple 6 Curve Expert 1.

,

,

,

,

,

,

,

$$\varphi(\varepsilon) = \sigma + \lambda \int_{0}^{t} (\beta, t - \tau) \sigma(\tau) d\tau$$

$$(1) \qquad , \qquad \sigma = const$$

$$\varphi(\varepsilon) = \sigma \left[1 + \lambda \sum_{n=0}^{\infty} \frac{(-\beta)^n t^{(n+1)(1-\alpha)}}{\Gamma\left[(1-\alpha)(n+1) + 1 \right]} \right]$$
(2)

$$\varphi(\varepsilon) = \sigma \left[1 + \frac{\lambda}{\Gamma[(1-\alpha)+1]} t^{1-\alpha} \right]$$
(3)

428

:

$$\varepsilon(t) = \varepsilon_0 \left[1 + \lambda \sum_{n=0}^{\infty} \frac{(-\beta)^n t^{(n+1)(1-\alpha)}}{\Gamma[(1-\alpha)(n+1)+1]} \right]$$
(4)

$$\sigma = 5 \qquad (a) \qquad (b) = 0 \qquad (c) \qquad (c)$$

$$S$$
.
 S ,
 S ,
,
,
β .
 $0,2$ 0,5,
 $(\lambda = 1,0475; \beta = 0,109.$ $ε_0$

.

t=100 . (2) α,β λ, $\phi(\epsilon)$. φ(ε)

•

$$\varphi(\varepsilon) = 20,37\varepsilon^{0,75}.$$

,

,

,

_

$$20,37\varepsilon^{0.75} = \sigma \left[1 + 1,0475 \sum_{n=0}^{\infty} \frac{(-0,109)^n t^{0.15(n+1)}}{\Gamma[0,15(n+1)+1]} \right]$$

.1
Maple 6 Excel
, $\sigma = 5, 10$ 15

,

1.

:

)

λ

(

,

,

,

,

,

6. 5, 10 15

,

.2.

• , 1974, .3, .111-114. 4. . ., . ., · ·, . . . // r-. 1977. 6. .77-82. 5. . ., . . . // . 1978. .42. .6. .1107-1114. 6. . // _ . 2002. 2. .83-88. : . . ., , . . . , , :

., .4

101990

.: (+7499) 135-78-30 (.), (+7-903)-684-75-68 (.) E-mail: juliasuvorova@mail.ru

431
[1,2].

[4]

[5,6].

[2,3].

[7]

 $\Omega = \left\{ \left(x, y, z \right); \, x, y \in \Omega_0, \left| z \right| \le h, \, h \lt \lt a \right\}, \qquad \Omega_0 -$, *a* – , $F_x(x,y,z),$ $F_{y}(x, y, z), \quad F_{z}(x, y, z)$

 $\stackrel{\dagger}{}_{xz} = \stackrel{\dagger}{}_{xz}^{+}(x, y), \stackrel{\dagger}{}_{yz} = \stackrel{\dagger}{}_{yz}^{+}(x, y), \stackrel{\dagger}{}_{z} = \stackrel{\dagger}{}_{z}^{+}(x, y) \quad \text{при } z = h$ $w = v^{3}w^{-}(x, y), \stackrel{\dagger}{}_{xz} = \stackrel{\dagger}{}_{xz}^{+}(x, y), \stackrel{\dagger}{}_{yz} = \stackrel{\dagger}{}_{yz}^{+}(x, y) \quad \text{при } z = -h$ (1)

$$\xi = x/a, \eta = y/a, \zeta = z/h \qquad \qquad U = u/a, V = v/a,$$

W = w/a. $\varepsilon = h/a$. [1-3].

$$Q = \varepsilon^{q_{i}} \sum_{s=0}^{N} \varepsilon^{s} Q^{(s)} (\xi, \eta, \zeta), \qquad (2)$$

$$Q - , q_{i} - ,$$

$$q_{i} = 3 \quad \sigma_{x}, \sigma_{y}, \sigma_{z}, \sigma_{xy}, U, V, W$$

$$q_{i} = 4 \quad \sigma_{xz}, \sigma_{yz} \qquad (3)$$

$$(2) \quad \epsilon, \quad (3), \qquad \epsilon, \quad (3), \qquad Q^{(s)}.$$

, .

[4]	•	
	,	

1.		:	, 1976. 512 .
2.			
	: , 1997. 414 .		
3.	,		-
	,	. :	,,
	, 2004. 468 .		
4.	,// .		. 199346.
	3-43-11.		
5.	,	-	
	2001,	, . 16-18.	

. .- . .,

:. , . , . , .: (097)201949 E-mail:<u>alexkhach49@yandex.ru</u>

:

,

. .- . .,

: , . .: (097)203242 5

,

, ,*n*

> , (1).

 $\dagger = \frac{K}{\sqrt{2fr}} \cdot f(\mu)$ $r - , K - , \mu - , K -$ (2)

$$(,,)$$

$$\dagger = \frac{K}{\sqrt{2fr}} = \frac{K}{\sqrt{2f}} \cdot r^{\frac{1}{2}}$$
(3)

(

)

2. [3-5].

,

10⁻¹)

r

1/2

),

(

$$\dagger = \frac{K}{\sqrt{2f}} \cdot r^{-\}}$$
(4)

-

0.5 }, 3.

K

(3) (4)

(3),

r . r [6]. (3) (4)

 $K_{c} = K_{c \ 0.5} \cdot r_{kp}^{-0.5}$ (5)

,

$$r_{kp} = \frac{K_{0.5}}{2f \dagger_T^2} \tag{6}$$

- 1. . ., . . .: , 1985. 504 .
- 2. Paris P.C. Fracture Mechanics Approach to Fatigue, Sagamore Army Matls Research Conference, 10-th Fatague-Interdisciplinary Approach, Proc. Aug. 13-16, 1963, p. 107-132.
- Williams M.L. Stress Singularities resulting from various Boundary Conditions in angular corners of plates in extention. J. of Appl. Mech., 19, 1952, p. 526-528.

:

•

4.

.

, 1987. 338 .

5.

2. .87-96.

. .,

6. Taylor D. The theory of distances, Engineering Fracture Mechanics 75 (2008), p.1696-1705.

. //

.

•

, . , 1971. .38.

. .

.// .

7.

8.

. .: , 1990. . I. 448 . . ., . . .,

9. A.S. Khachikyan, K.H. Karapetyan, R.A. Shirinyan, V.V. Hakobyan Modeling of behaviour of the flat friction lining under the external thermal and mechanical action In the Lecture Notes in Applied and Computional Mechanics V-27, 2006 (3-540-31760-0), Springer, p. 373-374.

:

. .- . .,

. 24 , , , ,0019 . (37410) 56-81-88 (.), 74-02-89 (.) -mail: <u>albert@mechins.sci.am</u>

,

,

_

. ,

,

,

,

,

. [1, 2].

,

, [3].

, -, 1957 [4]. [5-7]. () () , [8-10]. , [11]. ,[12, 13]. , [14]. [15] [16],

,

,

[15-16]. 1 - 10[17]. . 1983, 1. 1, 17-43. 2. Tsaturyan A.K. Contemporary problems of biomechanics. 1990. Mir Pblr., Moscow, 127-41. 3. , 1981. **259**, 53-6. . 4. Huxley A.F. Progr. Biophys. Biophys. Chem. 1957, 7, 255-318. 5. Smith D., Geeves M.A. Biophys. J. 1995, 69, 538-53. 6. , 1991, 36, 660-7. 7. , 1991, 36, 668-75 . . 8. Huxley E.H., Stewart A., Sosa H., Irving T. Biophys. J. 1994, 67, 2111-21. 9. Wakabayashi K., Sugimoto Y., Tanaka H., Ueno Y., Takezawa Y., Amemiya Y. Biophys. J. 1994, 67, 2422-35. 10. Linari M., Dobbie I., Reconditi M., Koubassova N., Irving M., Piazzesi G., Lombardi V. Biophys. J. 1998, 74, 2459-73. 11. Tsaturyan A.K. Bershitsky S.Y., Koubassova N., Narayanan T., Roessle M., Ferenczi M.A. Biophys. J. 2005, 88, 1902-10. 12. , 1998, **43**, 329-34. . . 13. . 2004. 177-82. 14. Shestakov D.A., Tsaturyan A.K. J. Muscle Res. Cell Motil. 1999, 20, 825-6. 15. Thorston J., White D. C. J. Physiol. 1984, 343, 59-84. 16. Razumova M.V., Bukatina A.E., Campbell K.B. J. Appl. Physiol. 1999. 87, 1861-76. 17. Kawai M. J. Muscle Res. Cell Motil. 1986, 7, 412-34.

: ..., ..., : 119992, ./ : +7 (495) 939 1252 E-mail: tsat@imec.msu.ru

:

· · · · · · 1

. . .

· · · ·

. .1

. . .

. .1

. .- . ., . . ., : 119992, ./ : +7 (495) 939 1252 E-mail: <u>natalia@imec.msu.ru</u>

. .

..., : 119992, ./ : +7 (495) 939 1252 E-mail: <u>xelenka@imec.msu.ru</u>

ABOUT DYNAMIC CONTACT PROBLEMS FOR BODIES WITH ELASTIC COVER PLATE Nugzar Shavlakadze Tbilisi, Georgia

The problems of the transfer of loads to elastic bodies from thin-shelled elements (cover plate) under action of harmonic forces belong to non-classical dynamic contact problems. Such type problems consist in determination of distribution laws for corresponding contact stresses along contact line, when on upper bound of cover plate act harmonic horizontal and vertical forces.

Differential equations of the oscillations of the cover plate have the form

$$\frac{\partial^2 u^{(1)}(x,t)}{\partial x^2} - \frac{\dots}{E_1} \frac{\partial^2 u^{(1)}(x,t)}{\partial t^2} = \frac{1}{E_1 h_1} \ddagger (x,t) - \frac{\ddagger_0 \mathsf{U}(x) e^{-i\mathsf{S}t}}{E_1 h_1}$$

$$D \frac{\partial^2 v^{(1)}(x,t)}{\partial x^2} - \dots h_1 \frac{\partial^2 v^{(1)}(x,t)}{\partial t^2} = p(x,t) - p_0 \mathsf{U}(x) e^{-i\mathsf{S}t}$$
(1)

where $u^{(1)}(x,t)$ and $v^{(1)}(x,t)$ are respectively horizontal and vertical displacements of the points of the cover plate, \dots_1 - density of the material and E_1 -elasticity module for cover plate. $\ddagger(x,t)$ and p(x,t) are respectively unknown tangential and normal contact stresses in point x at time t, acting on the cover plate along its joint line with a body. D is the bending rigidity and h_1 - the thickness of the cover plate. $\ddagger_0 U(x)e^{-iSt}$ and $p_0U(x)e^{-iSt}$ are respectively horizontal and vertical harmonic forces with frequency S concentrated in the origin of coordinates.

Depending on conditions of the problem the components of displacement of the points of elastic body are represented by amplitudes of unknown contact stresses. In the problem for half-plane, which bound is strengthened by infinite cover plate, by use of Lame's equations the amplitudes of horizontal and vertical displacements of boundary points of elastic half-plane are represented by the amplitudes of tangential and normal contact stresses with formulas

$$u^{(2)}(x) = \int_{-\infty}^{\infty} K_1(|x-s|) \ddagger (s) ds + \int_{-\infty}^{\infty} K_2(|x-s|) p(s) ds$$

$$v^{(2)}(x) = \int_{-\infty}^{\infty} K_2(|x-s|) \ddagger (s) ds + \int_{-\infty}^{\infty} K_3(|x-s|) p(s) ds, \quad -\infty < x < \infty$$

$$K_1(x) = \frac{1}{2f} \int_{-\infty + iV}^{\infty + iV} \frac{x_2 p_2^2 e^{-i\Gamma x} d\Gamma}{\Delta(\Gamma)}$$
(2)

$$K_{2}(x) = \frac{i}{2f} \int_{-\infty+iv}^{\infty+iv} \frac{r(2r^{2} - p_{2}^{2} - 2x_{1}x_{2})e^{-irx}dr}{\Delta(r)}$$

$$K_{3}(x) = -\frac{1}{2f} \int_{-\infty+iv}^{\infty+iv} \frac{x_{1}p_{2}^{2}e^{-irx}dr}{\Delta(r)}$$

$$x_{1} = \sqrt{r^{2} - p_{1}^{2}}, \quad x_{2} = \sqrt{r^{2} - p_{2}^{2}}$$

$$p_{1} = \frac{\tilde{S}}{c_{1}}, \quad p_{2} = \frac{\tilde{S}}{c_{2}}, \quad c_{1} = \sqrt{\frac{y_{2} + 2z_{2}}{w_{2}}}, \quad c_{2} = \sqrt{\frac{z_{2}}{w_{2}}}$$

$$\Delta(r) = 4z_{2}r^{2}x_{1}x_{2} - z_{2}(2r^{2} - p_{2}^{2})^{2}, \quad v > 0$$

 $}_2, \sim_2$ - are Lame's parameters, \dots_2 - the density of half-plane material. Due to the contact conditions of the cover plate with plate

 $u^{(1)}(x) = u^{(2)}(x), \qquad v^{(1)}(x) = v^{(2)}(x)$

By formulas (1-2) for determination of amplitudes of contact strains one may receive the system of integral differential equations. In different cases of the problem the received system of equations can be investigated by exact or approximate methods.

Information about autor:

Shavlakadze Nugzar

Senior Researcher, professor A. Razmadze Mathematical Institute, Georgian Technical University Adress:1, Aleksidze St., Tbilisi 0193 Tel.: (995 32) 942910, (995 32) 334951 E-mail: <u>nusha@rmi.acnet.ge</u>

,

 $y = \Delta\left(\sin\frac{\pi x}{\lambda}\right),$

:

$$x = \frac{\omega_c D_0 t}{2} - , \quad \omega_c, \omega_0 -$$

$$\begin{split} \omega_{c} &= \frac{\omega_{0}}{2} \times \left(1 - \frac{d}{D_{0}}\right); \lambda = \frac{\pi D_{0}}{z} z - , \\ D_{0} &= , \\ & & \\ & & \\ & & \\ p(t) &= \frac{m_{p} \Delta \omega_{c}^{2} z^{2}}{4} \left| \sin \frac{\omega_{c} z t}{2} \right| \\ & & \\ p(t) &= \frac{m_{p} \Delta A^{2}}{\pi} \sum_{i=1}^{\infty} B_{i} \cos i A t \\ i &= , \\ & & \\ i &= \frac{\omega_{0}}{2} \left(1 - \frac{d}{D_{0}}\right) z; \quad B_{i} = \frac{1}{4i^{2} - 1}. \end{split}$$

[2]

$$\begin{cases} m_{p} \ddot{y}_{1} = P_{p} - F_{y_{1}} + p(t) \\ F_{y_{1}} = F_{y_{2}} \end{cases}$$
(2)

$$m_{p}, P_{p} - :$$

$$P_{p} = C_{p} \left(\lambda_{1} - \lambda_{2} \right)$$

$$C_{p} - , \lambda_{1} , \lambda_{2} -$$
(3)

$$y, F_{y_1} - ,$$
 [1]:

$$F_{y_1} = C_p \left(y_1 - y_2 + \lambda_1 - \lambda_2 \right)$$
(4)

,

 $y_1, y_2 - y_2, F_{y_2} - y_2 = 0$

$$F_{y_2} = CB(y_2 - \lambda_2)^{3/2}$$
(5)
- , B - :

$$B = B_0 - B_1 \cos \omega_0 t , \ B_0 = \cos^{5/2} \frac{\phi}{2} + \frac{1}{2} \left(1 + \cos^{5/2} \phi \right)$$
(6)

q ,

q	,
---	---

$$\begin{array}{l} & - & & & & & & & \\ & & & & & & \\ y_{1} = y_{10} + y_{1}'; & & & & & \\ y_{20} = \frac{9\omega_{1}^{2}\cos\omega_{0}t}{\left[h^{2} - \omega_{1}^{2} - \omega_{0}^{2}\left(h^{2} + C_{p}\right)\right]} + \frac{A^{2}\Delta\left(h^{2} + C_{p}\right)}{\pi} \times \\ & & & \times \sum_{i=1}^{\infty} \frac{B_{i}\cos iAt}{\left[h^{2}\omega_{1}^{2} - i^{2}A^{2}\left(h^{2} + C_{p}\right)\right]} \\ y_{1}' = \sum_{i=1}^{\infty} \sum_{n=2}^{\infty} q^{n-1} \left\{D_{n}'\cos n\omega_{0}t + D_{ni}'\cos\left[(n-1)\omega_{0} + \right. \\ & & & \quad + iA\right]t + D_{ni}'\cos\left[(n-1)\omega_{0} - iA\right]t\right\}$$

$$\begin{split} D_n &= 9\omega_1^2 \prod_{n=2}^n \frac{\omega_1^2 - (n-1)^2 \omega_1^2}{2^{n-1} \left[n^2 \omega_1^2 - \omega_0^2 \left(h^2 + C_p \right) \right]} \times \\ &\times \frac{\omega_1^2 - (n-1)^2 \omega_1^2}{\left[h^2 \omega_1^2 - n \omega_0^2 \left(h^2 + C_p \right) \right]} \\ D'_n &= \frac{A^2 \Delta C_p \omega_1^2}{\pi} \prod_{n=2}^n \frac{B_i \left\{ \omega_1^2 - \left[(n-2) \omega_0 + iA \right]^2 \right\}}{2^{n-1} \left(\omega_1^2 - i^2 A^2 \right)} \times \\ &\times \frac{1}{\left[h^2 \omega_1^2 - i^2 A^2 \left(h^2 + C_p \right) \right] \left\{ h^2 \omega_1^2 - \left[(n-1) \omega_0 + iA \right]^2 \left(h^2 + C_p \right) \right\}} \\ D''_n &= \frac{A^2 \Delta C_p \omega_1^2}{\pi} \prod_{n=2}^n \frac{B_i \left\{ \omega_1^2 - \left[(n-2) \omega_0 - iA \right]^2 \right\}}{2^{n-1} \left(\omega_1^2 - i^2 A^2 \right) \left[h^2 \omega_1^2 - i^2 A^2 \left(h^2 + C_p \right) \right]} \\ &\times \frac{1}{\left\{ h^2 \omega_1^2 - \left[(n-1) \omega_0 - iA \right]^2 \left(h^2 + C_p \right) \right\}} \\ y_{20} &= \frac{9 \left(\omega_1^2 - \omega_0^2 \right)}{\left[h^2 \omega_1^2 - \omega_0 \left(h^2 + - p \right) \right]} \quad os \omega_0 t + \\ &+ \frac{A^2 \Delta C_p}{\pi} \sum_{n=1}^\infty \frac{B_i \cos iAt}{\left[h^2 \omega_1^2 - i^2 A^2 \left(h^2 + C_p \right) \right]} \\ y'_2 &= \sum_{i=2}^\infty \sum_{n=2}^\infty q^{n-1} \left\{ E_n \cos n \omega_0 t + E'_{ni} \cos \left[(n-1) \omega_0 + iA \right] t + \\ &+ E''_{ni} \cos \left[(n-1) \omega_0 - iA \right] t \\ E_n &= 9 \prod_{n=1}^n \frac{\left(\omega_1^2 - \omega_0^2 \left(h^2 + C_p \right) \right) \left[h^2 \omega_1^2 - n^2 \omega_0^2 \left(h^2 + C_p \right) \right]} \\ \end{split}$$

$$E'_{ni} = \frac{A^{2}\Delta C_{p}}{\pi} \prod_{n=1}^{n} \frac{B_{ki} \left\{ \omega_{1}^{2} - \left[(n-1)\omega_{0} + iA \right]^{2} \right\}}{2^{n-1} \left[h^{2}\omega_{1}^{2} - i^{2}A^{2} \left(h^{2} + C_{p} \right) \right]} \times \frac{1}{\left\{ h^{2}\omega_{1}^{2} - \left[(n-1)\omega_{0} + iA \right]^{2} \left(h^{2} + C_{p} \right) \right\}}$$

$$E''_{ni} = \frac{A^{2}\Delta C_{p}}{\pi} \prod_{n=2}^{n} \frac{B_{ki} \left\{ \omega_{1}^{2} - \left[(n-1)\omega_{0} - iA \right]^{2} \right\}}{2^{n-1} \left[h^{2}\omega_{1}^{2} - i^{2}A^{2} \left(h^{2} + C_{p} \right) \right]} \times \frac{1}{\left\{ h^{2}\omega_{1}^{2} - \left[(n-1)\omega_{0} - iA \right]^{2} \left(h^{2} + C_{p} \right) \right\}}$$
(9)

,

. 2

,

$$Q = 2, 4, 20, 50$$

,

с

•

Δ, • . -. , (9) . 2 , , , Δ . ", 2004. 1. : .,, . . . 330 . 2. ٠, , . // , 2006. . 32–36. • . 3. .: , 1977. 456 .

. . .,

.: (+37410) 35.11.35 (...), (+37491) 49 38 40

:

.: (+37491) 40 41 86

•••,	•••	•••,	• •	-
				7
Avetisyan V.V. Maita	ha Chanhari T	Time_ontimal co	ntrolled search	ofa
immobile object				17
• •,	••			-
,				22
•••	••			27
• •,	••			26
• •,	••			43
••				51
••••••				
•••,	•••	••		
				58
• •,	•			-
				- 63
				-
		•••••		68
Alexeeva S.I., Mosin A of time-dependent mate	.V., Suvorova rial behaviour	J.V. General ap	proach to descr	iption 73
• .			,	00
			••••••	80
• •,	••			85
•••,				03

•••, •••, ••
· ·, · ·, · ·, · ·,
110
· ·, · ·, · ·, · · ·
· ·, · ·
· ·, ·
•••
136
.,
· ·
···, ··.
•••
•••, ••

· ·, · · ·
10
17
•••
A.A.
21
21
•••, •
· ·, · · ·
tyan K.A. The influence of axial tension on the strength, creeping
tions, and dissipative properties of glass-reinforced tubes under the nditions

Karapet deformat shear con

	• •,	• •,
258	••	•••,
		••
		••
		•••
288		• •
	• •	•••,

Manukyan N.K. Iterative methods for stabilized discrete convection- liffusion problems 298	Manukya diffusion J
,	
· ., · . · -	
· ·, · ·	
•••, ••	_
328	
-	
· ·, · · · -	
340	
,,	
· · ·	
0	
()	
,	
· · ·	
	-

•••,		-
•••		
		, -
		- 394
• •		- 399
• •,	••	- 404
Seyranian Alexander P., H and periodic motion of a ph (theory and experiment)	Hiroshi Yabuno and Koji Tsumoto ysical pendulum with vibrating susp	Instability ension point 412
		422
• •	-	- 427
•••,		
		432
		- 435
• •,	•••, •••,	•••
Shavlakadze Nugzar Abou elastic cover plate	ut dynamic contact problems for bodi	440 les with 444
• •, •		446